1
|
Kovalchuk I, Kornilovych B, Tobilko V, Bondarieva A, Kholodko Y. Adsorption removal of heavy metal ions from multi-component aqueous system by clay-supported nanoscale zero-valent iron. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2127754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2022]
Affiliation(s)
- Iryna Kovalchuk
- Department of Sorption and Fine Inorganic Synthesis, Institute for Sorption and Problem of Endoecology of NAS of Ukraine, Kyiv, Ukraine
- Department of Chemical Technology of Ceramics and Glass, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
| | - Borys Kornilovych
- Department of Sorption and Fine Inorganic Synthesis, Institute for Sorption and Problem of Endoecology of NAS of Ukraine, Kyiv, Ukraine
- Department of Chemical Technology of Ceramics and Glass, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
| | - Viktoriia Tobilko
- Department of Chemical Technology of Ceramics and Glass, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
| | - Antonina Bondarieva
- Department of Chemical Technology of Ceramics and Glass, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
| | - Yurii Kholodko
- Department of Chemical Technology of Ceramics and Glass, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
| |
Collapse
|
2
|
Hua Y, Li D, Gu T, Wang W, Li R, Yang J, Zhang WX. Enrichment of Uranium from Aqueous Solutions with Nanoscale Zero-valent Iron: Surface Chemistry and Application Prospect. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21040160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Uranium Removal from Groundwater and Wastewater Using Clay-Supported Nanoscale Zero-Valent Iron. METALS 2020. [DOI: 10.3390/met10111421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The peculiarities of sorption removal of uranium (VI) compounds from the surface and mineralized groundwater using clay-supported nanoscale zero-valent iron (nZVI) composite materials are studied. Representatives of the main structural types of clay minerals are taken as clays: kaolinite (Kt), montmorillonite (MMT) and palygorskite (Pg). It was found that the obtained samples of composite sorbents have much better sorption properties for the removal of uranium from surface and mineralized waters compared to natural clays and nZVI.It is shown that in mineralized waters uranium (VI) is mainly in anionic form, namely in the form of carbonate complexes, which are practically not extracted by pure clays. According to the efficiency of removal of uranium compounds from surface and mineralized waters, composite sorbents form a sequence: montmorillonite-nZVI > palygorskite-nZVI > kaolinite-nZVI, which corresponds to a decrease in the specific surface area of the pristine clay minerals.
Collapse
|
5
|
Wang X, Chen L, Wang L, Fan Q, Pan D, Li J, Chi F, Xie Y, Yu S, Xiao C, Luo F, Wang J, Wang X, Chen C, Wu W, Shi W, Wang S, Wang X. Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Sci China Chem 2019; 62:933-967. [DOI: https:/doi.org/10.1007/s11426-019-9492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/05/2019] [Indexed: 06/25/2023]
|
6
|
Lv X, Qin X, Wang K, Peng Y, Wang P, Jiang G. Nanoscale zero valent iron supported on MgAl-LDH-decorated reduced graphene oxide: Enhanced performance in Cr(VI) removal, mechanism and regeneration. JOURNAL OF HAZARDOUS MATERIALS 2019; 373:176-186. [PMID: 30921568 DOI: 10.1016/j.jhazmat.2019.03.091] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/25/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
The scaled application of nanoscale zero-valent iron nanoparticles (nZVI or Fe° NPs) in environmental remediation is challenged by easy surface passivation and particle aggregation. To improve this situation and enhance their performance in Cr(VI) removal from water phase, we present one novel strategy to hybridize nZVI with layered double hydroxide (LDH) decorated reduced graphene oxide (rGO). The as-prepared ternary (Fe@LDH/rGO) composites possess better dispersibility, improved hydrophilicity and more positive surfaces that allows higher removal efficiency and capacity for Cr(VI) oxyanions. Composition proportion are optimized and influences of surroundings (solution pH, Cr(VI) concentration and temperature) are evaluated. Also, we demonstrate that Fe@LDH/rGO can be reused with suitable post-treatments, which combines alkaline solution desorption and NaBH4 revivification possess. Cr desorption and Fe leaching ratio during regeneration should be critical indicators that determine the recovery efficiency. Synergistic effect within this ternary system not only contributes to its superiorities in stability, but also continuous iron corrosion via the formation of micro Fe-C batteries, where rGO acts as cathode and alternative electron conductor. The present work suggests great potentials of Fe@LDH/rGO composites in groundwater remediation.
Collapse
Affiliation(s)
- Xiaoshu Lv
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xiaofeng Qin
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Kaifeng Wang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yiyin Peng
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Peng Wang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Guangming Jiang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China.
| |
Collapse
|
7
|
Wang S, Zhao M, Zhou M, Li YC, Wang J, Gao B, Sato S, Feng K, Yin W, Igalavithana AD, Oleszczuk P, Wang X, Ok YS. Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2019; 373:820-834. [PMID: 30981127 DOI: 10.1016/j.jhazmat.2019.03.080] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/22/2019] [Accepted: 03/18/2019] [Indexed: 05/22/2023]
Abstract
The promising characteristics of nanoscale zero-valent iron (nZVI) have not been fully exploited owing to intrinsic limitations. Carbon-enriched biochar (BC) has been widely used to overcome the limitations of nZVI and improve its reaction with environmental pollutants. This work reviews the preparation of nZVI/BC nanocomposites; the effects of BC as a supporting matrix on the nZVI crystallite size, dispersion, and oxidation and electron transfer capacity; and its interaction mechanisms with contaminants. The literature review suggests that the properties and preparation conditions of BC (e.g., pore structure, functional groups, feedstock composition, and pyrogenic temperature) play important roles in the manipulation of nZVI properties. This review discusses the interactions of nZVI/BC composites with heavy metals, nitrates, and organic compounds in soil and water. Overall, BC contributes to the removal of contaminants because it can attenuate contaminants on the surface of nZVI/BC; it also enhances electron transfer from nZVI to target contaminants owing to its good electrical conductivity and improves the crystallite size and dispersion of nZVI. This review is intended to provide insights into methods of optimizing nZVI/BC synthesis and maximizing the efficiency of nZVI in environmental cleanup.
Collapse
Affiliation(s)
- Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Mingyue Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Min Zhou
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yuncong C Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Soil and Water Sciences Department, Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL, 33031, USA
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, PR China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Shinjiro Sato
- Department of Science & Engineering for Sustainable Innovation, SOKA University, Hachiojishi, Tokyo, 192-8577, Japan
| | - Ke Feng
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China
| | - Weiqin Yin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Avanthi Deshani Igalavithana
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Patryk Oleszczuk
- Department of Environmental Chemistry, Faculty of Chemistry, Maria Sklodowska-Curie University, Maria Curie-Sklodowska Square 3, 20-031 Lublin, Poland
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China.
| | - Yong Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea.
| |
Collapse
|