1
|
Han J, Yang Y, Qiu B, Liu P, Wu X, Wang G, Liu S, Zhou X. Infrared photodissociation spectroscopy of mass-selected [TaO 3(CO 2) n] + ( n = 2-5) complexes in the gas phase. Phys Chem Chem Phys 2023; 25:13198-13208. [PMID: 37129869 DOI: 10.1039/d3cp01384g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We report a joint experimental and theoretical study on the structures of gas-phase [TaO3(CO2)n]+ (n = 2-5) ion-molecule complexes. Infrared photodissociation spectra of mass-selected [TaO3(CO2)n]+ complexes were recorded in the frequency region from 2200 to 2450 cm-1 and assigned through comparing with the simulated infrared spectra of energetically low-lying structures derived from quantum chemical calculations. With the increasing number of attached CO2 molecules, the larger clusters show significantly enhanced fragmentation efficiency and a strong band appears at around 2350 cm-1 near the free CO2 antisymmetric stretching vibration band, indicating only a small perturbation of CO2 molecules on the secondary solvation sphere while higher frequency bands corresponding to the core structure remain largely unaffected. A core structure [TaO3(CO2)3]+ is identified to which subsequent CO2 ligands are weakly attached and the most favorable cluster growth path is verified to proceed on the triplet potential energy surface higher in energy than that of ground states. Theoretical exploration reveals a two-state reactivity (TSR) scenario in which the energetically favored triplet transition state crosses over the singlet ground state to form a TaO3+ core ion, providing new information on the cluster formation correlated with the reactivity of tantalum metal oxides towards CO2.
Collapse
Affiliation(s)
- Jia Han
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yang Yang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China.
| | - Binglin Qiu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Pengcheng Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Xiangkun Wu
- Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Guanjun Wang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China.
| | - Shilin Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Xiaoguo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
2
|
Dalebout R, Barberis L, Visser NL, van der Hoeven JES, van der Eerden AMJ, Stewart JA, Meirer F, de Jong KP, de Jongh PE. Manganese Oxide as a Promoter for Copper Catalysts in CO 2 and CO Hydrogenation. ChemCatChem 2022; 14:e202200451. [PMID: 36605570 PMCID: PMC9804442 DOI: 10.1002/cctc.202200451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/19/2022] [Indexed: 01/07/2023]
Abstract
In this work, we discuss the role of manganese oxide as a promoter in Cu catalysts supported on graphitic carbon during hydrogenation of CO2 and CO. MnOx is a selectivity modifier in an H2/CO2 feed and is a highly effective activity promoter in an H2/CO feed. Interestingly, the presence of MnOx suppresses the methanol formation from CO2 (TOF of 0.7 ⋅ 10-3 s-1 at 533 K and 40 bar) and enhances the low-temperature reverse water-gas shift reaction (TOF of 5.7 ⋅ 10-3 s-1) with a selectivity to CO of 87 %C. Using time-resolved XAS at high temperatures and pressures, we find significant absorption of CO2 to the MnO, which is reversed if CO2 is removed from the feed. This work reveals fundamental differences in the promoting effect of MnOx and ZnOx and contributes to a better understanding of the role of reducible oxide promoters in Cu-based hydrogenation catalysts.
Collapse
Affiliation(s)
- Remco Dalebout
- Materials Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Laura Barberis
- Materials Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Nienke L. Visser
- Materials Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Jessi E. S. van der Hoeven
- Materials Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Ad M. J. van der Eerden
- Materials Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Joseph A. Stewart
- TotalEnergies OneTech BelgiumZone industrielle CB-7181SeneffeBelgium
| | - Florian Meirer
- Inorganic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Krijn P. de Jong
- Materials Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Petra E. de Jongh
- Materials Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| |
Collapse
|
3
|
Hou H, Xu S, Ding S, Lin W, Yu Q, Zhang J, Qian G. Electroplating sludge-derived metal and sulfur co-doping catalyst and its application in methanol production by CO 2 catalytic hydrogenation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156032. [PMID: 35597356 DOI: 10.1016/j.scitotenv.2022.156032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Electroplating sludge is a hazardous waste and its recycling is a hot topic. Electroplating sludge usually contains plenty of transition metals and multi-hetero atoms, which are potential resources. For the first time, this work synthesized spinel catalyst from Zn- and Cr-containing electroplating sludges by a simple calcination method, and applied the obtained catalysts in CH3OH production by CO2 catalytic hydrogenation. The spinel was doped by various heteroatoms, including Fe, Mn, Cu, and even S. According to detailed characterizations, the metal doping increased the low-temperature conversion efficiency of CO2 but decreased the CH3OH selectivity at the same time. After a further doping of S, although CO2 conversion efficiency was slightly decreased, the selectivity of CH3OH was significantly increased. After all, the optimized catalyst attained a conversion efficiency of 8.6% (CO2) as well as a selectivity of 73.3% (CH3OH) at 250 °C and 3 MPa. As a result, above results realized high-value-added utilization of hazardous waste and producing valuable product at the same time, which was in favor of circular development.
Collapse
Affiliation(s)
- Hao Hou
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, PR China; Shanghai Petrochemical Research Institute, No. 1658 Pudong North Road, Shanghai 201208, PR China
| | - Shichu Xu
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, PR China
| | - Suyan Ding
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, PR China
| | - Weijie Lin
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, PR China
| | - Qiang Yu
- Shanghai Petrochemical Research Institute, No. 1658 Pudong North Road, Shanghai 201208, PR China.
| | - Jia Zhang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, PR China.
| | - Guangren Qian
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, PR China
| |
Collapse
|
4
|
Co-Production of Methanol and Methyl Formate via Catalytic Hydrogenation of CO2 over Promoted Cu/ZnO Catalyst Supported on Al2O3 and SBA-15. Catalysts 2022. [DOI: 10.3390/catal12091018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cu/ZnO catalysts promoted with Mn, Nb and Zr, in a 1:1:1 ration, and supported on Al2O3 (CZMNZA) and SBA-15 (CZMNZS) were synthesized using an impregnation method. The catalytic performance of methanol synthesis from CO2 hydrogenation was investigated in a fixed-bed reactor at 250 °C, 22.5 bar, GHSV 10,800 mL/g·h and H2/CO2 ratio of 3. The CZMNZA catalyst resulted in higher CO2 conversion and MeOH selectivity of 7.22% and 32.10%, respectively, despite having a lower BET surface area and pore volume compared to CZMNZS. Methyl formate is the major product obtained over both types of catalysts. The CZMNZA is a promising catalyst for co-producing methanol and methyl formate via the CO2 hydrogenation reaction.
Collapse
|
5
|
Effects of Promoter’s Composition on the Physicochemical Properties of Cu/ZnO/Al2O3-ZrO2 Catalyst. Catalysts 2022. [DOI: 10.3390/catal12060636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cu/ZnO catalysts were synthesized via an impregnation method on an Al2O3-ZrO2 support and modified by the addition of manganese and niobium as promoters. The effect of the selected promoters on the physicochemical properties and performance toward the hydrogenation of CO2 to methanol are presented in this paper. The Mn and Nb promoters improved the reducibility of the catalyst as evidenced by the shifting of the H2-TPR peaks from 315 °C for the un-promoted catalyst to 284 °C for the Mn- and Nb-promoted catalyst. The catalytic performance in a CO2 hydrogenation reaction was evaluated in a fixed-bed reactor system at 22.5 bar and 250 °C for 5 h. Amongst the catalysts investigated, the catalyst with equal ratio of Mn and Nb promoters exhibited the smallest particle size of 6.7 nm and highest amount of medium-strength basic sites (87 µmol/g), which resulted in the highest CO2 conversion (15.9%) and methanol selectivity (68.8%).
Collapse
|
6
|
Asthana S, Tripathi K, Pant KK. Impact of La engineered stable phase mixed precursors on physico-chemical features of Cu- based catalysts for conversion of CO2 rich syngas to methanol. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Liu H, Jiang Y, Zhao H, Hou Z. Preparation of highly dispersed Cu catalysts from hydrotalcite precursor for the dehydrogenation of 1,4-butanediol. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Han J. Catalytic syngas production from carbon dioxide of two emission source scenarios: techno-economic assessment. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Liang Y, Mao D, Guo X, Yu J, Wu G, Ma Z. Solvothermal preparation of CuO-ZnO-ZrO2 catalysts for methanol synthesis via CO2 hydrogenation. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.03.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Highly dispersed Cu-ZnO-ZrO2 nanoparticles on hydrotalcite adsorbent as efficient composite catalysts for CO2 hydrogenation to methanol. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-020-0736-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Fang X, Chen C, Jia H, Li Y, Liu J, Wang Y, Song Y, Du T, Liu L. Progress in Adsorption-Enhanced Hydrogenation of CO2 on Layered Double Hydroxide (LDH) Derived Catalysts. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
12
|
Abstract
The climate situation that the planet is experiencing, mainly due to the emission of greenhouse gases, poses great challenges to mitigate it. Since CO2 is the most abundant greenhouse gas, it is essential to reduce its emissions or, failing that, to use it to obtain chemicals of industrial interest. In recent years, much research have focused on the use of CO2 to obtain methanol, which is a raw material for the synthesis of several important chemicals, and dimethyl ether, which is advertised as the cleanest and highest efficiency diesel substitute fuel. Given that the bibliography on these catalytic reactions is already beginning to be extensive, and due to the great variety of catalysts studied by the different research groups, this review aims to expose the most important catalytic characteristics to take into account in the design of silica-based catalysts for the conversion of carbon dioxide to methanol and dimethyl ether.
Collapse
|
13
|
Zain MM, Mohammadi M, Kamiuchi N, Mohamed AR. Development of highly selective In2O3/ZrO2 catalyst for hydrogenation of CO2 to methanol: An insight into the catalyst preparation method. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0573-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Wang W, Qu Z, Song L, Fu Q. Effect of the nature of copper species on methanol synthesis from CO2 hydrogenation reaction over CuO/Ce0.4Zr0.6O2 catalyst. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Tetragonal zirconia based ternary ZnO-ZrO2-MOx solid solution catalysts for highly selective conversion of CO2 to methanol at High reaction temperature. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.04.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Tian H, Liao J, Zha F, Guo X, Tang X, Chang Y, Ma X. Catalytic Performance of In/HZSM‐5 for Coupling Propane with CO
2
to Propylene. ChemistrySelect 2020. [DOI: 10.1002/slct.202000497] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Haifeng Tian
- College of Chemical & Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Jiankang Liao
- College of Chemical & Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Fei Zha
- College of Chemical & Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Xiaojun Guo
- College of Chemical & Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Xiaohua Tang
- College of Chemical & Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Yue Chang
- College of Chemical & Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education Lanzhou 730070 China
| | - Xiaoxun Ma
- College of Chemical EngineeringNorthwest University Xi'an 710069 China
| |
Collapse
|
17
|
Ateka A, Ereña J, Bilbao J, Aguayo AT. Strategies for the Intensification of CO2 Valorization in the One-Step Dimethyl Ether Synthesis Process. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ainara Ateka
- Department of Chemical Engineering, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain
| | - Javier Ereña
- Department of Chemical Engineering, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain
| | - Javier Bilbao
- Department of Chemical Engineering, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain
| | - Andrés T. Aguayo
- Department of Chemical Engineering, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain
| |
Collapse
|
18
|
Alirezvani Z, Dekamin MG, Valiey E. New Hydrogen-Bond-Enriched 1,3,5-Tris(2-hydroxyethyl) Isocyanurate Covalently Functionalized MCM-41: An Efficient and Recoverable Hybrid Catalyst for Convenient Synthesis of Acridinedione Derivatives. ACS OMEGA 2019; 4:20618-20633. [PMID: 31858048 PMCID: PMC6906789 DOI: 10.1021/acsomega.9b02755] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/28/2019] [Indexed: 05/03/2023]
Abstract
A new nano-ordered 1,3,5-tris(2-hydroxyethyl) isocyanurate-1,3-propylene covalently functionalized MCM-41 (MCM-41-Pr-THEIC) was designed and prepared at room temperature through a simple procedure. According to various microscopic, spectroscopic, or thermal methods and techniques, the correlation of the catalytic performance of the hybrid mesoporous MCM-41-Pr-THEIC to its structural characteristics was fully confirmed. The new MCM-41-Pr-THEIC organosilica nanomaterials were successfully investigated as a solid mild nanocatalyst through hydrogen-bonding activation provided by its organic moiety, for the pseudo-four-component condensation of dimedone, aldehydes, and ammonium acetate or p-toluidine to afford the corresponding acridinedione derivatives under green conditions. Furthermore, the introduced nanocatalyst could be reused at least four times with negligible loss of its activity, indicating the good stability and high activity of the new hybrid organosilica.
Collapse
Affiliation(s)
- Zahra Alirezvani
- Pharmaceutical and Heterocyclic
Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mohammad G. Dekamin
- Pharmaceutical and Heterocyclic
Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Ehsan Valiey
- Pharmaceutical and Heterocyclic
Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
19
|
Wong YJ, Koh MK, Khairudin NF, Ichikawa S, Morikawa Y, Mohamed AR. Development of Co Supported on Co−Al Spinel Catalysts from Exsolution of Amorphous Co−Al Oxides for Carbon Dioxide Reforming of Methane. ChemCatChem 2019. [DOI: 10.1002/cctc.201901098] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yee Jie Wong
- School of Chemical Engineering Universiti Sains MalaysiaEngineering Campus 14300 Nibong Tebal Pulau Pinang Malaysia
- Department of Precision Science and Technology Graduate School of EngineeringOsaka University 2-1 Yamadaoka Suita, Osaka 565-0871 Japan
| | - Mei Kee Koh
- School of Chemical Engineering Universiti Sains MalaysiaEngineering Campus 14300 Nibong Tebal Pulau Pinang Malaysia
- School of Energy and Chemical EngineeringXiamen University Malaysia 43900 Sepang, Selangor Malaysia
| | - Nor Fazila Khairudin
- School of Chemical Engineering Universiti Sains MalaysiaEngineering Campus 14300 Nibong Tebal Pulau Pinang Malaysia
| | - Satoshi Ichikawa
- Research Center for Ultra-High Voltage Electron MicroscopyOsaka University 2-1 Yamadaoka Suita, Osaka 565-0871 Japan
| | - Yoshitada Morikawa
- Department of Precision Science and Technology Graduate School of EngineeringOsaka University 2-1 Yamadaoka Suita, Osaka 565-0871 Japan
- Research Center for Ultra-Precision Science and Technology Graduate School of EngineeringOsaka University 2-1 Yamadaoka Suita, Osaka 565-0871 Japan
| | - Abdul Rahman Mohamed
- School of Chemical Engineering Universiti Sains MalaysiaEngineering Campus 14300 Nibong Tebal Pulau Pinang Malaysia
| |
Collapse
|
20
|
Lee JK, Lee IB, Han J. Techno-economic analysis of methanol production from joint feedstock of coke oven gas and basic oxygen furnace gas from steel-making. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.02.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|