1
|
Lv TR, Zhang WH, Yang YQ, Zhang JC, Yin MJ, Yin Z, Yong KT, An QF. Micro/Nano-Fabrication of Flexible Poly(3,4-Ethylenedioxythiophene)-Based Conductive Films for High-Performance Microdevices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301071. [PMID: 37069773 DOI: 10.1002/smll.202301071] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/11/2023] [Indexed: 06/19/2023]
Abstract
With the increasing demands for novel flexible organic electronic devices, conductive polymers are now becoming the rising star for reaching such targets, which has witnessed significant breakthroughs in the fields of thermoelectric devices, solar cells, sensors, and hydrogels during the past decade due to their outstanding conductivity, solution-processing ability, as well as tailorability. However, the commercialization of those devices still lags markedly behind the corresponding research advances, arising from the not high enough performance and limited manufacturing techniques. The conductivity and micro/nano-structure of conductive polymer films are two critical factors for achieving high-performance microdevices. In this review, the state-of-the-art technologies for developing organic devices by using conductive polymers are comprehensively summarized, which will begin with a description of the commonly used synthesis methods and mechanisms for conductive polymers. Next, the current techniques for the fabrication of conductive polymer films will be proffered and discussed. Subsequently, approaches for tailoring the nanostructures and microstructures of conductive polymer films are summarized and discussed. Then, the applications of micro/nano-fabricated conductive films-based devices in various fields are given and the role of the micro/nano-structures on the device performances is highlighted. Finally, the perspectives on future directions in this exciting field are presented.
Collapse
Affiliation(s)
- Tian-Run Lv
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Wen-Hai Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124, China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, China
| | - Ya-Qiong Yang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jia-Chen Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Ming-Jie Yin
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Zhigang Yin
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, 400044, China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Quan-Fu An
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
2
|
Kim Y, Hong JY, Jeon YP, Park JB, Lee CJ, Lee JU. Fabrication of Wearable Transistor with All-Graphene Electrodes via Hot Pressing. Polymers (Basel) 2022; 14:polym14132602. [PMID: 35808647 PMCID: PMC9269206 DOI: 10.3390/polym14132602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Textile electronics are ideal for novel electronic devices owing to their flexibility, light weight, and wearability. In this work, wearable organic field-effect transistors (OFETs) with all-graphene electrodes, fabricated using hot pressing, are described. First, highly conductive and flexible electrodes consisting of a cotton textile substrate and electrochemically exfoliated graphene (EEG) were prepared via hot pressing. The EEG/textile electrodes exhibited a low sheet resistance of 1.3 Ω sq−1 and high flexibility; these were used as gate electrodes in the wearable OFETs. In addition, spray-coated EEG was also used as the source/drain (S/D) electrodes of the wearable OFETs, which recorded a sheet resistance of 14.8 Ω sq−1 after hot pressing. The wearable OFETs exhibited stable electrical performance, a field-effect mobility of 13.8 cm2 V−1 s−1, and an on–off current ratio of ~103 during 1000 cycles of bending. Consequently, the fabrication method for wearable transistors developed using textiles and hot-pressed graphene electrodes has potential applications in next-generation wearable devices.
Collapse
Affiliation(s)
- Youn Kim
- School of Electrical Engineering, Korea University, Seoul 02841, Korea;
| | - Jin-Yong Hong
- Carbon Industry Frontier Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea; (J.-Y.H.); (Y.-P.J.)
| | - Young-Pyo Jeon
- Carbon Industry Frontier Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea; (J.-Y.H.); (Y.-P.J.)
| | - Jung Bin Park
- Department of Advanced Materials Engineering for Information and Electronics, Integrated Education Institute for Frontier Science and Technology (BK21 Four), Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Gyeonggi-do, Korea;
| | - Cheol Jin Lee
- School of Electrical Engineering, Korea University, Seoul 02841, Korea;
- Correspondence: (C.J.L.); (J.U.L.); Tel.: +82-31-201-3655 (J.U.L.)
| | - Jea Uk Lee
- Department of Advanced Materials Engineering for Information and Electronics, Integrated Education Institute for Frontier Science and Technology (BK21 Four), Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Gyeonggi-do, Korea;
- Correspondence: (C.J.L.); (J.U.L.); Tel.: +82-31-201-3655 (J.U.L.)
| |
Collapse
|