1
|
Song S, Hu J, Wang C, Luo M, Wang X, Zhai F, Zheng J. Pt 3(CoNi) Ternary Intermetallic Nanoparticles Immobilized on N-Doped Carbon Derived from Zeolitic Imidazolate Frameworks for Oxygen Reduction. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4775. [PMID: 39410345 PMCID: PMC11477947 DOI: 10.3390/ma17194775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Pt-based intermetallic compound (IMC) nanoparticles have been considered the most promising catalysts for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFC). Herein, we propose a strategy for producing ordered Pt3(CoNi) ternary IMC nanoparticles supported on N-doped carbon materials. Particularly, the Co and Ni are originally embedded into ZIF-derived carbon, which diffuse into Pt nanocrystals to form Pt3(CoNi) nanoparticles. Moreover, a thin layer of carbon develops outside of Pt3(CoNi) nanoparticles during the cooling process, which contributes to stabilizing the Pt3(CoNi) on carbon supports. The optimal Pt3(CoNi) nanoparticle catalyst has achieved significantly enhanced activity and stability, exhibiting a half-wave potential of 0.885 V vs reversible hydrogen electrode (RHE) and losing only 16 mV after 10,000 potential cycles between 0.6 and 1.0 V. Unlike the direct-use commercial carbon (VXC-72) for depositing Pt, we utilized ZIF-derived carbon containing dispersed Co and Ni nanocluster or nanoparticles to prepare ordered Pt3(CoNi) intermetallic catalysts.
Collapse
Affiliation(s)
- Shiqi Song
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Junhua Hu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chupeng Wang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mingsheng Luo
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoxia Wang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fengxia Zhai
- Sushui Energy Technology (Shanghai) Co., Ltd., Shanghai 200444, China
| | - Jianyong Zheng
- Institute of Artificial Intelligence, Shanghai University, Shanghai 200444, China;
| |
Collapse
|
2
|
Ramli ZAC, Pasupuleti J, Kamarudin SK, Zainoodin AM, Isahak WNRW, Koh SP, Kiong ST. Harnessing the Potential of Hollow Graphitic Carbon Nanocages for Enhanced Methanol Oxidation Using PtRu Nanoparticles. Polymers (Basel) 2024; 16:2684. [PMID: 39408400 PMCID: PMC11478971 DOI: 10.3390/polym16192684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 10/20/2024] Open
Abstract
Direct Methanol Fuel Cell (DMFC) is a powerful system for generating electrical energy for various applications. However, there are several limitations that hinder the commercialization of DMFCs, such as the expense of platinum (Pt) at market price, sluggish methanol oxidation reaction (MOR) due to carbon monoxide (CO) formation, and slow electrooxidation kinetics. This work introduces carbon nanocages (CNCs) that were obtained through the pyrolysis of polypyrrole (Ppy) as the carbon source. The CNCs were characterized using BET, XRD, HRTEM, TEM, SEM, and FTIR techniques. The CNCs derived from the Ppy source, pyrolyzed at 750 °C, exhibited the best morphologies with a high specific surface area of 416 m2g-1, allowing for good metal dispersion. Subsequently, PtRu catalyst was doped onto the CNC-Ppy750 support using chemical reduction and microwave-assisted methods. In electrochemical tests, the PtRu/CNC-Ppy750 electrocatalyst demonstrated improved CO tolerance and higher performance in MOR compared to PtRu-supported commercial carbon black (CB), with values of 427 mA mg-1 and 248 mA mg-1, respectively. The superior MOR performance of PtRu/CNC-Ppy750 was attributed to its high surface area of CNC support, uniform dispersion of PtRu catalyst, and small PtRu nanoparticles on the CNC. In DMFC single-cell tests, the PtRu/CNC-Ppy750 exhibited higher performance, approximately 1.7 times higher than PtRu/CB. In conclusion, the PtRu/CNC-PPy750 represents a promising electrocatalyst candidate for MOR and anodic DMFC applications.
Collapse
Affiliation(s)
- Zatil Amali Che Ramli
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional (UNITEN), Putrajaya Campus, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (Z.A.C.R.); (S.T.K.)
| | - Jagadeesh Pasupuleti
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional (UNITEN), Putrajaya Campus, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (Z.A.C.R.); (S.T.K.)
| | - Siti Kartom Kamarudin
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (S.K.K.); (A.M.Z.)
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Azran Mohd Zainoodin
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (S.K.K.); (A.M.Z.)
| | - Wan Nor Roslam Wan Isahak
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - S. P. Koh
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional (UNITEN), Putrajaya Campus, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (Z.A.C.R.); (S.T.K.)
| | - Sieh Tiong Kiong
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional (UNITEN), Putrajaya Campus, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (Z.A.C.R.); (S.T.K.)
| |
Collapse
|
3
|
Seselj N, Alfaro SM, Bompolaki E, Cleemann LN, Torres T, Azizi K. Catalyst Development for High-Temperature Polymer Electrolyte Membrane Fuel Cell (HT-PEMFC) Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302207. [PMID: 37151102 DOI: 10.1002/adma.202302207] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Indexed: 05/09/2023]
Abstract
A constant increase in global emission standard is causing fuel cell (FC) technology to gain importance. Over the last two decades, a great deal of research has been focused on developing more active catalysts to boost the performance of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC), as well as their durability. Due to material degradation at high-temperature conditions, catalyst design becomes challenging. Two main approaches are suggested: (i) alloying platinum (Pt) with low-cost transition metals to reduce Pt usage, and (ii) developing novel catalyst support that anchor metal particles more efficiently while inhibiting corrosion phenomena. In this comprehensive review, the most recent platinum group metal (PGM) and platinum group metal free (PGM-free) catalyst development is detailed, as well as the development of alternative carbon (C) supports for HT-PEMFCs.
Collapse
Affiliation(s)
- Nedjeljko Seselj
- Blue World Technologies, Egeskovvej 6C, Kvistgaard, 3490, Denmark
| | - Silvia M Alfaro
- Blue World Technologies, Egeskovvej 6C, Kvistgaard, 3490, Denmark
| | | | - Lars N Cleemann
- Blue World Technologies, Egeskovvej 6C, Kvistgaard, 3490, Denmark
| | - Tomas Torres
- Department of Organic Chemistry, Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, Madrid, 28049, Spain
- IMDEA-Nanociencia, c/Faraday, 9, Ciudad Universitaria de Cantoblanco, Madrid, 28049, Spain
| | - Kobra Azizi
- Blue World Technologies, Egeskovvej 6C, Kvistgaard, 3490, Denmark
| |
Collapse
|
4
|
Zhang D, Ding R, Tang Y, He Y. PtRuFe/Carbon Nanotube Composites as Bifunctional Catalysts for Efficient Methanol Oxidation and Oxygen Reduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1640-1650. [PMID: 36642917 DOI: 10.1021/acs.langmuir.2c03122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The design of bifunctional catalysts with high performance and low platinum for the oxygen reduction reaction (ORR) and the methanol oxidation reaction (MOR) is of significant implication to promote the industrialization of fuel cells. In our work, Pt/carbon nanotube (CNT), Pt3Ru/CNT, and PtRu/CNT catalysts were synthesized by plasma heat treatment, in which the pyrolysis reduction of organometallic salts and the dispersion of CNTs were achieved simultaneously, and catalytic nanoparticles with uniform particle size were anchored on the dispersed CNT surface. Later, Fe was further introduced, and PtFe/CNT, Pt3RuFe/CNT, and PtRuFe/CNT catalysts were synthesized by calcination, and the structure and electrochemical properties in both MOR and ORR of all as-synthesized catalysts were investigated. The results indicated that plasma thermal treatment has the advantage of rapidness and immediacy in the synthesis of catalysts, and the Pt/CNT, Pt3Ru/CNT, and PtRu/CNT catalysts exhibited better electrocatalytic properties than commercial platinum (JM-Pt/C) catalysts. Meanwhile, the introduction of Fe during the calcination further changed the surface electronic properties of catalytic nanoparticles and enhanced the graphitization degree of catalysts; the PtRuFe/CNT catalyst exhibited outstanding electrocatalytic properties with a mass activity of 834.3 mA mg-1 for MOR and a half-wave potential of 0.928 V in alkaline media for ORR. The combination of plasma thermal treatment and calcination puts forward a novel strategy for the optimization of catalysts, and the synthesis method based on plasma dispersion needs to be further optimized to achieve its large-scale promotion.
Collapse
Affiliation(s)
- Da Zhang
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Ruixin Ding
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Yuanzheng Tang
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Yan He
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
| |
Collapse
|
5
|
PtCo-Based nanocatalyst for oxygen reduction reaction: Recent highlights on synthesis strategy and catalytic mechanism. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Jung JY, Kim DG, Jang I, Kim ND, Yoo SJ, Kim P. Synthesis of hollow structured PtNi/Pt core/shell and Pt-only nanoparticles via galvanic displacement and selective etching for efficient oxygen reduction reaction. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Abstract
The present review highlights the synthetic strategies and potential applications of TMNs for organic reactions, environmental remediation, and health-related activities.
Collapse
Affiliation(s)
- Shushay Hagos Gebre
- College of Natural and Computational Science, Department of Chemistry, Jigjiga University, P.O. Box, 1020, Jigjiga, Ethiopia
| |
Collapse
|
8
|
One-Pot Microwave-Assisted Synthesis of Graphene-Supported PtCoM (M = Mn, Ru, Mo) Catalysts for Low-Temperature Fuel Cells. Catalysts 2021. [DOI: 10.3390/catal11121431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, one-pot microwave-assisted synthesis was used to fabricate the graphene (GR)-supported PtCoM catalysts where M = Mn, Ru, and Mo. The catalysts with the molar ratios of metals Pt:Co:Mn, Pt:Co:Ru, and Pt:Co:Mo equal to 1:3:1, 1:2:2, and 7:2:1, respectively, were prepared. Catalysts were characterized using Transmission Electron Microscopy (TEM). The electrocatalytic activity of the GR-supported PtCoMn, PtCoRu, and PtCoMo catalysts was evaluated toward methanol oxidation in an alkaline medium employing cyclic voltammetry and chrono-techniques. The most efficient electrochemical characteristics demonstrated the PtCoMn/GR catalyst with a current density value of 144.5 mA cm−2, which was up to 4.8 times higher than that at the PtCoRu(1:2:2)/GR, PtCoMo(7:2:1)/GR, and bare Pt/GR catalysts.
Collapse
|
9
|
Enhanced Performance of Pt Nanoparticles on Ni-N Co-Doped Graphitized Carbon for Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells. Catalysts 2021. [DOI: 10.3390/catal11080909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Since the reaction rate and cost for cathodic catalyst in polymer electrolyte membrane fuel cells are obstacles for commercialization, the high-performance catalyst for oxygen reduction reaction is necessary. The Ni encapsulated with N-doped graphitic carbon (Ni@NGC) prepared with ethylenediamine and carbon black is employed as an efficient support for the oxygen reduction reaction. Characterizations show that the Ni@NGC has a large surface area and mesoporous structure that is suitable to the support for the Pt catalyst. The catalyst structure is identified and the size of Pt nanoparticles distributed in the narrow range of 2–3 nm. Four different nitrogen species are doped properly into graphitic carbon structure. The Pt/Ni@NGC shows higher performance than the commercial Pt/C catalyst in an acidic electrolyte. The mass activity of the Pt/Ni@NGC in fuel cell tests exhibits over 1.5 times higher than that of commercial Pt/C catalyst. The Pt/Ni@NGC catalyst at low Pt loading exhibits 47% higher maximum power density than the Pt/C catalyst under H2-air atmosphere. These results indicate that the Ni@NGC as a support is significantly beneficial to improving activity.
Collapse
|
10
|
|
11
|
Kim GH, Kim D, Kim J, Kim H, Park T. Impact of cracked gas diffusion layer on performance of polymer electrolyte membrane fuel cells. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Prism patterned TiO2 layers/Nafion® composite membrane for elevated temperature/low relative humidity fuel cell operation. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.07.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Radhakrishnan T, Nampoothiri KN, Sandhyarani N. Enhanced electro-catalytic activity of palladium nanocoral structures with platinum incorporation. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Tang Z, Yeo BC, Han SS, Lee TJ, Bhang SH, Kim WS, Yu T. Facile aqueous-phase synthesis of Ag-Cu-Pt-Pd quadrometallic nanoparticles. NANO CONVERGENCE 2019; 6:38. [PMID: 31788735 PMCID: PMC6885459 DOI: 10.1186/s40580-019-0208-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Ag-Cu-Pt-Pd quadrometallic nanoparticles which small Pt and Pd nanoparticles were attached on the surface of AgCu Janus nanoparticles were firstly synthesized by sequential reduction of Pt and Pd precursor in the presence of Janus AgCu bimetallic nanoparticles as seeds in an aqueous solution. Even though there was a small amount of Cu2O on the surface, the synthesized nanoparticles were mainly composed of four independent metallic part, not alloy parts. By theoretical calculation and growth mechanism study, we found that different reducing rate between Ag+ and Cu2+ and sequential reduction of Pt and Pd precursors would be key roles for the formation of the quadrometallic nanoparticles.
Collapse
Affiliation(s)
- Zengmin Tang
- Department of Chemical Engineering, College of Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Byung Chul Yeo
- Center for Computational Science, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Sang Soo Han
- Center for Computational Science, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Tae-Jin Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Woo-Sik Kim
- Department of Chemical Engineering, College of Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea.
| | - Taekyung Yu
- Department of Chemical Engineering, College of Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
15
|
Siller‐Ceniceros AA, Sánchez‐Castro E, Morales‐Acosta D, Torres‐Lubián JR, Martínez‐Guerra E, Rodríguez‐Varela J. Functionalizing Reduced Graphene Oxide with Ru‐Organometallic Compounds as an Effective Strategy to Produce High‐Performance Pt Nanocatalysts for the Methanol Oxidation Reaction. ChemElectroChem 2019. [DOI: 10.1002/celc.201901190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Adriana A. Siller‐Ceniceros
- Nanociencias y NanotecnologíaCinvestav Unidad Saltillo Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe Ramos Arizpe, Coah. C.P. 25900 México
| | - Esther Sánchez‐Castro
- Nanociencias y NanotecnologíaCinvestav Unidad Saltillo Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe Ramos Arizpe, Coah. C.P. 25900 México
- Sustentabilidad de los Recursos Naturales y EnergíaCinvestav Unidad Saltillo Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe Ramos Arizpe, Coah. C.P. 25900 México
| | - Diana Morales‐Acosta
- CONACYT-Centro de Investigación en Química Aplicada Blvd. Enrique Reyna No. 140 Saltillo, Coah. C.P. 25294 México
| | - José R. Torres‐Lubián
- CONACYT-Centro de Investigación en Química Aplicada Blvd. Enrique Reyna No. 140 Saltillo, Coah. C.P. 25294 México
| | - Eduardo Martínez‐Guerra
- Centro de Investigación en Materiales Avanzados S.C. Alianza Norte 202, PIIT, Carretera Monterrey-Aeropuerto Km. 10 Apodaca, NL. C.P. 66628 México
| | - Javier Rodríguez‐Varela
- Nanociencias y NanotecnologíaCinvestav Unidad Saltillo Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe Ramos Arizpe, Coah. C.P. 25900 México
- Sustentabilidad de los Recursos Naturales y EnergíaCinvestav Unidad Saltillo Av. Industria Metalúrgica 1062, Parque Industrial Ramos Arizpe Ramos Arizpe, Coah. C.P. 25900 México
| |
Collapse
|