1
|
Wang G, Cheng H. Recyclable MXene-bridged Z-scheme NiFe 2O 4/MXene/Bi 2WO 6 heterojunction with enhanced charge separation for efficient sonocatalytic removal of ciprofloxacin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165833. [PMID: 37517721 DOI: 10.1016/j.scitotenv.2023.165833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Sonocatalysis has emerged as a promising technology for addressing environmental pollution issues. However, the efficacy of sonocatalytic processes is primarily hindered by challenges related to the sluggish flow rate of photogenerated electrons. This study presents a novel approach to address this issue by developing an improved Z-scheme NiFe2O4/MXene/Bi2WO6 (NMB) composite that exhibits exceptional sonocatalytic activity for ciprofloxacin (CIP) degradation. In particular, the NiFe2O4/MXene (5 wt%)/Bi2WO6 composite could achieve high CIP (at 10 mg/L) degradation efficiency (97.39 %) after 60 min of ultrasonic irradiation. The exceptional sonocatalytic activity of the composite was attributed to the synergistic interaction of the Z-scheme heterojunction charge transfer route and the electron mediator of Ti3C2-MXene, which enhances light collection capacity, separates photogenerated carriers efficiently, and improves redox activity of the composite. The scavenging experiments reveal that the sonocatalytic degradation of CIP was driven by holes (h+), hydroxyl radicals (•OH), and superoxide anion radicals (•O2-), with the former playing a dominant role. The results of reuse experiments demonstrate the outstanding sonocatalytic stability of the catalyst, as well as its uncomplicated recovery. The developed NMB Z-scheme composite shows promise for sonocatalytic treatment of antibiotics in industrial wastewaters, particularly those with high turbidity and/or low transparency. The findings also open up avenues for developing efficient and cost-effective sonocatalysts with good recyclability and remarkable performance.
Collapse
Affiliation(s)
- Guowei Wang
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
2
|
Wang G, Cheng H. Application of Photocatalysis and Sonocatalysis for Treatment of Organic Dye Wastewater and the Synergistic Effect of Ultrasound and Light. Molecules 2023; 28:molecules28093706. [PMID: 37175115 PMCID: PMC10180204 DOI: 10.3390/molecules28093706] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Organic dyes play vital roles in the textile industry, while the discharge of organic dye wastewater in the production and utilization of dyes has caused significant damage to the aquatic ecosystem. This review aims to summarize the mechanisms of photocatalysis, sonocatalysis, and sonophotocatalysis in the treatment of organic dye wastewater and the recent advances in catalyst development, with a focus on the synergistic effect of ultrasound and light in the catalytic degradation of organic dyes. The performance of TiO2-based catalysts for organic dye degradation in photocatalytic, sonocatalytic, and sonophotocatalytic systems is compared. With significant synergistic effect of ultrasound and light, sonophotocatalysis generally performs much better than sonocatalysis or photocatalysis alone in pollutant degradation, yet it has a much higher energy requirement. Future research directions are proposed to expand the fundamental knowledge on the sonophotocatalysis process and to enhance its practical application in degrading organic dyes in wastewater.
Collapse
Affiliation(s)
- Guowei Wang
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Recent developments in GO/Cellulose based composites: Properties, synthesis, and its applications. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
4
|
Yasmin N, Liaqat A, Ali G, Kalsoom A, Safdar M, Mirza M. Synthesis and characterization of silver-indium and antimony selenide: role in photocatalytic degradation of dyes. Heliyon 2022; 8:e11088. [PMID: 36281382 PMCID: PMC9586916 DOI: 10.1016/j.heliyon.2022.e11088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/09/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
These days, water contamination poses a severe threat to the ecosystem and demands immediate care. This study examined the need to reduce water pollution using clean, renewable energy (solar light irradiations) for the degradation of Congo red by Silver-indium and antimony selenide with chemical composition AgInSbSe3. The sample was fabricated through a hydrothermal technique. The synthesized sample was characterized through X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and Ultraviolet-Visible spectroscopy. The X-ray diffraction confirms crystalline structure of the synthesized sample. The SEM analysis reveals irregular grains and exhibits a very small inter-particle distance. SEM provides the morphology of the synthesized sample, the grain size of the synthesized sample was 0.58 μm. FTIR results revealed specific absorption bands in the range of 400-4000 cm-1; optical properties are studied through UV-Vis-spectroscopy. The synthesized sample has 1.97 eV bandgap which is suitable for degradation of organic pollutants. The photocatalytic activity of the material is checked by degrading the Congo red dye under direct sunlight irradiation and for the 75 min illumination 77.8% degradation efficiency is attained.
Collapse
Affiliation(s)
- N. Yasmin
- Department of Physics the Women University Multan 66000, Pakistan
| | - A. Liaqat
- Department of Physics the Women University Multan 66000, Pakistan
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E) National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - G. Ali
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E) National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - A. Kalsoom
- Department of Physics Govt. Sadiq College Women University, Bahawalpur 63100, Pakistan
| | - M. Safdar
- Department of Basic Sciences & Humanities Khawaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - M. Mirza
- Department of Physics the Women University Multan 66000, Pakistan
| |
Collapse
|
5
|
|
6
|
Construction of Z-scheme (TiO2/Er3+:YAlO3)/NiFe2O4 photocatalyst composite for intensifying hydrodynamic cavitation degradation of oxytetracycline in aqueous solution. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
7
|
Role of Oil Palm Empty Fruit Bunch-Derived Cellulose in Improving the Sonocatalytic Activity of Silver-Doped Titanium Dioxide. Polymers (Basel) 2021; 13:polym13203530. [PMID: 34685289 PMCID: PMC8541471 DOI: 10.3390/polym13203530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, a novel cellulose/Ag/TiO2 nanocomposite was successfully synthesized via the hydrothermal method. The cellulose extracted from oil palm empty fruit bunch (OPEFB) could address the disposal issue created by OPEFB biomass. Characterization studies such as FESEM, EDX, HRTEM, XRD, FTIR, UV-Vis DRS, PL, XPS, and surface analysis were conducted. It was observed that the incorporation of cellulose could hinder the agglomeration, reduce the band gap energy to 3 eV, increase the specific surface area to 150.22 m3/g, and lower the recombination rate of the generated electron-hole pairs compared to Ag/TiO2 nanoparticles. The excellent properties enhance the sonocatalytic degradation efficiency of 10 mg/L Congo red (up to 81.3% after 10 min ultrasonic irradiation) in the presence of 0.5 g/L cellulose/Ag/TiO2 at 24 kHz and 280 W. The improvement of catalytic activity was due to the surface plasmon resonance effect of Ag and numerous hydroxyl groups on cellulose that capture the holes, which delay the recombination rate of the charge carriers in TiO2. This study demonstrated an alternative approach in the development of an efficient sonocatalyst for the sonocatalytic degradation of Congo red.
Collapse
|
8
|
Wang G, Ma X, Liu J, Qin L, Li B, Hu Y, Cheng H. Design and performance of a novel direct Z-scheme NiGa 2O 4/CeO 2 nanocomposite with enhanced sonocatalytic activity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140192. [PMID: 32590130 DOI: 10.1016/j.scitotenv.2020.140192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 05/26/2023]
Abstract
A novel direct Z-scheme NiGa2O4/CeO2 nanocomposite was designed and prepared via simple sol-hydrothermal and calcination methods, and its sonocatalytic activity was tested by studying the degradation of a model antimicrobial agent, malachite green (MG), under ultrasonic irradiation. Near complete (96.2%) degradation of MG (at 10 mg/L) could be achieved by the NiGa2O4/CeO2 nanocomposite (at 1.0 g/L) after ultrasonic irradiation (40 kHz, 300 W) for 60 min at 25 °C. Under the same conditions, only 51.2 and 72.0% of the MG degraded in the presence of NiGa2O4 and CeO2 (at 1.0 g/L), respectively. These results demonstrate that the direct Z-scheme NiGa2O4/CeO2 nanocomposite has excellent sonocatalytic activity, which is attributed to the matching band-gaps between NiGa2O4 and CeO2. The sonocatalytic activity of NiGa2O4/CeO2 nanocomposite decreased by 17% after four cycles of reuse, which is indicative of relatively good reusability. Scavenging experiments revealed that sonocatalytic degradation of MG results from the combined action of hydroxyl radicals (OH) and holes (h+), with the latter having a greater contribution. The pathways and mechanism of MG degradation were proposed based on the degradation intermediates detected. The results demonstrate that the prepared direct Z-scheme NiGa2O4/CeO2 nanocomposite worked as designed and exhibited high and stable sonocatalytic activity during MG degradation, and could thus serve as a promising candidate in sonocatalytic treatment of other organic pollutants in wastewaters. The findings also provide new insights on the mechanism of sonocatalytic degradation and the design of efficient Z-scheme sonocatalysts.
Collapse
Affiliation(s)
- Guowei Wang
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Xue Ma
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Jue Liu
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Lifan Qin
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Bing Li
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Yuanan Hu
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
9
|
Qu Z, Liu Z, Wu A, Piao C, Li S, Wang J, Song Y. Preparation of a coated Z-scheme and H-type SrTiO3/(BiFeO3@ZnS) composite photocatalyst and application in degradation of 2,4-dichlorophenol with simultaneous conversion of Cr(VI). Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116653] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Askari N, Beheshti M, Mowla D, Farhadian M. Synthesis of CuWO4/Bi2S3 Z-scheme heterojunction with enhanced cephalexin photodegradation. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112463] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|