1
|
Khalil AK, Elgamouz A, Nazir S, Atieh MA, Alawadhi H, Laoui T. Preparation and characterization of clay based ceramic porous membranes and their use for the removal of lead ions from synthetic wastewater with an insight into the removal mechanism. Heliyon 2024; 10:e24939. [PMID: 38317898 PMCID: PMC10838747 DOI: 10.1016/j.heliyon.2024.e24939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
The present study explores the use of local clay from the United Arab Emirates (UAE) to prepare porous ceramic membranes (flat disk shape) for the purpose of removing toxic heavy metals from contaminated water. Four distinct ceramic membranes, crafted from locally sourced clay and incorporated with activated carbon and graphite, underwent careful and thorough preparation. The initial set of membranes was subjected to open-air sintering, resulting in the creation of mACA and mGrA membranes. Concurrently, a second set of meticulously prepared membranes underwent sintering under inert nitrogen conditions, yielding the formation of mACI and mGrI membranes, respectively. Prior to making the membranes, the clay material was characterized by thermogravimetric analysis (TGA), X-ray fluorescence (XRF), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction analysis (XRD). The clay presented the lowest weight loss compared to AC and Gr, implying that these two materials could be used as porogen agents. The X-ray fluorescence results indicated that the natural clay contained 65.5 wt% of silicon dioxide (SiO2), aluminium oxide (Al2O3), and iron (III) oxide (Fe2O3) falling within the class C category of clays according to ASTM. The FTIR analysis showed different clay regions allocated to various stretching and deformation vibrations of hydroxide, organic fraction, and (Si, Al, Fe)-O groups. The XRD analysis revealed the presence of kaolinite, illite, smectite and calcite phyllite phases in the clay mineral. The membranes were characterized using FESEM, with those containing AC (used as porogen) exhibiting large pores clearly visible on the surface, and were tested for the removal of lead (Pb2+) ions from synthetic wastewater. The removal efficiencies of the membranes were 33 %, 75.2 %, 100 % and 100 % for mACA, mACI, mGrA and mGrI respectively after 100 min operation. The wettability of the membranes was found to follow the order mACI < mACA < mGrI < mGrA, which corroborated well with water fluxes of 7, 8, 112 and 214 L h-1 m-2 recorded after 60 min duration and 1.0 bar applied pressure. The mechanisms of filtration of Pb2+ ions were adsorption for the AC-based membranes (mACA, mACI) and a combination of adsorption and size exclusion for the Gr-based membranes (mGrA, mGrI).
Collapse
Affiliation(s)
- Abdelrahman K.A. Khalil
- Research Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Abdelaziz Elgamouz
- Research Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Saad Nazir
- Department of Mechanical and Nuclear Engineering, College of Engineering, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Muataz Ali Atieh
- Research Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- Chemical and Water Desalination Engineering (CWDE) Program, College of Engineering, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Hussain Alawadhi
- Research Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- Department of Applied Physics & Astronomy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Tahar Laoui
- Research Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
- Department of Mechanical and Nuclear Engineering, College of Engineering, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| |
Collapse
|
2
|
Akbar Heidari A, Mahdavi H. Recent Advances in the Support Layer, Interlayer and Active Layer of TFC and TFN Organic Solvent Nanofiltration (OSN) Membranes: A Review. CHEM REC 2023:e202300189. [PMID: 37642266 DOI: 10.1002/tcr.202300189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/28/2023] [Indexed: 08/31/2023]
Abstract
Although separation of solutes from organic solutions is considered a challenging process, it is inevitable in various chemical, petrochemical and pharmaceutical industries. OSN membranes are the heart of OSN technology that are widely utilized to separate various solutes and contaminants from organic solvents, which is now considered an emerging field. Hence, numerous studies have been attracted to this field to manufacture novel membranes with outstanding properties. Thin-film composite (TFC) and nanocomposite (TFN) membranes are two different classes of membranes that have been recently utilized for this purpose. TFC and TFN membranes are made up of similar layers, and the difference is the use of various nanoparticles in TFN membranes, which are classified into two types of porous and nonporous ones, for enhancing the permeate flux. This study aims to review recent advances in TFC and TFN membranes fabricated for organic solvent nanofiltration (OSN) applications. Here, we will first study the materials used to fabricate the support layer, not only the membranes which are not stable in organic solvents and require to be cross-linked, but also those which are inherently stable in harsh media and do not need any cross-linking step, and all of their advantages and disadvantages. Then, we will study the effects of fabricating different interlayers on the performance of the membranes, and the mechanisms of introducing an interlayer in the regulation of the PA structure. At the final step, we will study the type of monomers utilized for the fabrication of the active layer, the effect of surfactants in reducing the tension between the monomers and the membrane surface, and the type of nanoparticles used in the active layer of TFN membranes and their effects in enhancing the membrane separation performance.
Collapse
Affiliation(s)
- Ali Akbar Heidari
- School of Chemistry, College of Science, University of Tehran, 1417614411, Tehran, Iran E-mail: addresses
| | - Hossein Mahdavi
- School of Chemistry, College of Science, University of Tehran, 1417614411, Tehran, Iran E-mail: addresses
| |
Collapse
|
3
|
Wang C, Ma Z, Qiu Y, Wang C, Ren LF, Shen J, Shao J. Patterned dense Janus membranes with simultaneously robust fouling, wetting and scaling resistance for membrane distillation. WATER RESEARCH 2023; 242:120308. [PMID: 37451192 DOI: 10.1016/j.watres.2023.120308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/15/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Membrane fouling, wetting and scaling are three prominent challenges that severely hinder the practical applications of membrane distillation (MD). Herein, polyamide/polyvinylidene fluoride (PA/PVDF) Janus membrane comprising a hydrophobic PVDF substrate and a patterned dense PA layer by reverse interfacial polymerization (R-IP) was developed. Direct contact MD experiments demonstrated that PA/PVDF Janus membrane could exhibit simultaneously superior resistance towards surfactant-induced wetting, oil-induced fouling and gypsum-induced scaling without compromising flux. Importantly, the size-sieving effect, rather than the breakthrough pressure of the membrane, was revealed as the critical factor that probably endowed its resistance to wetting. Furthermore, a unique possible anti-scaling mechanism was unveiled. The superhydrophilic patterned dense PA layer with strong salt rejection capability not only prevented scale-precursor ions from intruding the substrate but also resulted in the high surface interfacial energy that inhibited the adhesion and growth of gypsum on the membrane surface, while its relatively low surface -COOH density benefited from R-IP process further ensured the membrane with a low scaling propensity. This study shall provide new insights and novel strategies in designing high-performance MD membranes and enable robust applications of MD facing the challenges of membrane fouling, wetting and scaling.
Collapse
Affiliation(s)
- Chao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhongbao Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yangbo Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chengyi Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Long-Fei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China
| | - Jiahui Shao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
4
|
Nagendraprasad G, Adupa V, Anki Reddy K, Das C, Karan S. Semiaromatic Polyamide-Based Membrane in Forward Osmosis: Molecular Insights. J Phys Chem B 2023. [PMID: 37490347 DOI: 10.1021/acs.jpcb.3c01922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Despite the increased interest in forward osmosis (FO) in recent years, the technology's advancement in commercial and industrial applications has been hampered by the absence of suitable FO membranes and ideal draw solutes, which demands the exploration of new membranes and novel draw solutes targeted for some specific applications. In this context, we considered a semiaromatic polyamide (SAPA) for an application where monovalent salt can be permeated but has high selectivity toward divalent salt and excellent water permeability. In this regard, we constructed an atomistic model for the membrane via a heuristic approach using an equilibrated mixture of hydrolyzed trimesoyl chloride and piperazine monomers and performed nonequilibrium molecular dynamics simulations on the SAPA membrane in the FO process to understand the structural properties and performance of the membrane at the atomistic level. We used pure water as the feed and Na2SO4 as the draw solution. It is observed that the SAPA membrane shows excellent water permeability and no reverse draw solute flux. To further test the dynamics of salt ions inside the membranes, we performed two distinct equilibrium simulations on systems consisting of either monovalent salt, such as NaCl, or divalent salt, such as Na2SO4. The atomistic details of the interactions between the functional groups of the membrane and salt ions provided in this work can inspire further experiments on SAPA membranes in the context of separation of monovalent and divalent salts, which have applications in the treatment of textile industry wastewater.
Collapse
Affiliation(s)
- Gunolla Nagendraprasad
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Vasista Adupa
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - K Anki Reddy
- Department of Chemical Engineering, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517506, India
| | - Chandan Das
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Santanu Karan
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat 364002, India
| |
Collapse
|
5
|
Covaliu-Mierlă CI, Păunescu O, Iovu H. Recent Advances in Membranes Used for Nanofiltration to Remove Heavy Metals from Wastewater: A Review. MEMBRANES 2023; 13:643. [PMID: 37505009 PMCID: PMC10385156 DOI: 10.3390/membranes13070643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023]
Abstract
The presence of heavy metal ions in polluted wastewater represents a serious threat to human health, making proper disposal extremely important. The utilization of nanofiltration (NF) membranes has emerged as one of the most effective methods of heavy metal ion removal from wastewater due to their efficient operation, adaptable design, and affordability. NF membranes created from advanced materials are becoming increasingly popular due to their ability to depollute wastewater in a variety of circumstances. Tailoring the NF membrane's properties to efficiently remove heavy metal ions from wastewater, interfacial polymerization, and grafting techniques, along with the addition of nano-fillers, have proven to be the most effective modification methods. This paper presents a review of the modification processes and NF membrane performances for the removal of heavy metals from wastewater, as well as the application of these membranes for heavy metal ion wastewater treatment. Very high treatment efficiencies, such as 99.90%, have been achieved using membranes composed of polyvinyl amine (PVAM) and glutaraldehyde (GA) for Cr3+ removal from wastewater. However, nanofiltration membranes have certain drawbacks, such as fouling of the NF membrane. Repeated cleaning of the membrane influences its lifetime.
Collapse
Affiliation(s)
- Cristina Ileana Covaliu-Mierlă
- Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Oana Păunescu
- Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Horia Iovu
- Advanced Polymer Materials Group, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 132 Calea Grivitei, 010737 Bucharest, Romania
| |
Collapse
|
6
|
Gu S, Zhang L, de Campo L, O'Dell LA, Wang D, Wang G, Kong L. Lyotropic Liquid Crystal (LLC)-Templated Nanofiltration Membranes by Precisely Administering LLC/Substrate Interfacial Structure. MEMBRANES 2023; 13:549. [PMID: 37367753 DOI: 10.3390/membranes13060549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
Mesoporous materials based on lyotropic liquid crystal templates with precisely defined and flexible nanostructures offer an alluring solution to the age-old challenge of water scarcity. In contrast, polyamide (PA)-based thin-film composite (TFC) membranes have long been hailed as the state of the art in desalination. They grapple with a common trade-off between permeability and selectivity. However, the tides are turning as these novel materials, with pore sizes ranging from 0.2 to 5 nm, take center stage as highly coveted active layers in TFC membranes. With the ability to regulate water transport and influence the formation of the active layer, the middle porous substrate of TFC membranes becomes an essential player in unlocking their true potential. This review delves deep into the recent advancements in fabricating active layers using lyotropic liquid crystal templates on porous substrates. It meticulously analyzes the retention of the liquid crystal phase structure, explores the membrane fabrication processes, and evaluates the water filtration performance. Additionally, it presents an exhaustive comparison between the effects of substrates on both polyamide and lyotropic liquid crystal template top layer-based TFC membranes, covering crucial aspects such as surface pore structures, hydrophilicity, and heterogeneity. To push the boundaries even further, the review explores a diverse array of promising strategies for surface modification and interlayer introduction, all aimed at achieving an ideal substrate surface design. Moreover, it delves into the realm of cutting-edge techniques for detecting and unraveling the intricate interfacial structures between the lyotropic liquid crystal and the substrate. This review is a passport to unravel the enigmatic world of lyotropic liquid crystal-templated TFC membranes and their transformative role in global water challenges.
Collapse
Affiliation(s)
- Senlin Gu
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Liangliang Zhang
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Liliana de Campo
- Australian Centre for Neutron Scattering, Australia Nuclear Science and Technology Organization (ANSTO), Sydney, NSW 2234, Australia
| | - Luke A O'Dell
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Guang Wang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Spallation Neutron Source Science Centre, Dongguan 523803, China
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
7
|
Liu M, Zhang L, Geng N. Effect of Interlayer Construction on TFC Nanofiltration Membrane Performance: A Review from Materials Perspective. MEMBRANES 2023; 13:membranes13050497. [PMID: 37233558 DOI: 10.3390/membranes13050497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023]
Abstract
Polyamide (PA) thin-film composite (TFC) nanofiltration (NF) membranes, which are extensively utilized in seawater desalination and water purification, are limited by the upper bounds of permeability-selectivity. Recently, constructing an interlayer between the porous substrate and the PA layer has been considered a promising approach, as it may resolve the trade-off between permeability and selectivity, which is ubiquitous in NF membranes. The progress in interlayer technology has enabled the precise control of the interfacial polymerization (IP) process, which regulates the structure and performance of TFC NF membranes, resulting in a thin, dense, and defect-free PA selective layer. This review presents a summary of the latest developments in TFC NF membranes based on various interlayer materials. By drawing from existing literature, the structure and performance of new TFC NF membranes using different interlayer materials, such as organic interlayers (polyphenols, ion polymers, polymer organic acids, and other organic materials) and nanomaterial interlayers (nanoparticles, one-dimensional nanomaterials, and two-dimensional nanomaterials), are systematically reviewed and compared. Additionally, this paper proposes the perspectives of interlayer-based TFC NF membranes and the efforts required in the future. This review provides a comprehensive understanding and valuable guidance for the rational design of advanced NF membranes mediated by interlayers for seawater desalination and water purification.
Collapse
Affiliation(s)
- Mingxiang Liu
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| | - Lei Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| | - Nannan Geng
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| |
Collapse
|
8
|
Chen L, Zhou C, Yang T, Zhou W, Chen Y, Wang L, Lu C, Dong L. Imparting Outstanding Dispersibility to Nanoscaled 2D COFs for Constructing Organic Solvent Forward Osmosis Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300456. [PMID: 36932874 DOI: 10.1002/smll.202300456] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/02/2023] [Indexed: 06/18/2023]
Abstract
In the context of thin-film nanocomposite membranes with interlayer (TFNi), nanoparticles are deposited uniformly onto the support prior to the formation of the polyamide (PA) layer. The successful implementation of this approach relies on the ability of nanoparticles to meet strict requirements regarding their sizes, dispersibility, and compatibility. Nevertheless, the synthesis of covalent organic frameworks (COFs) that are well-dispersed, uniformly morphological, and exhibit improved affinity to the PA network, while preventing agglomeration, remains a significant challenge. In this work, a simple and efficient method is presented for the synthesis of well-dispersed, uniformly morphological, and amine-functionalized 2D imine-linked COFs regardless of the ligand composition, group type, or framework pore size, by utilizing a polyethyleneimine (PEI) shielded covalent self-assembly strategy. Subsequently, the as-prepared COFs are incorporated into TFNi for the recycling of pharmaceutical synthetic organic solvents. After optimization, the membrane exhibits a high rejection rate and a favorable solvent flux, making it a reliable method for efficient organic recovery and the concentration of active pharmaceutical ingredient (API) from the mother liquor through an organic solvent forward osmosis (OSFO) process. Notably, this study represents the first investigation of the impact of COF nanoparticles in TFNi on OSFO performance.
Collapse
Affiliation(s)
- Li Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Cailong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Tianyi Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Wei Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Ying Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Linghao Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Chenyang Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Lichun Dong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
9
|
Hong Y, Hua D, Pan J, Cheng X, Xu K, Huo Z, Zhan G. Fabrication of Polyamide Membranes by Interlayer-assisted Interfacial Polymerization Method With Enhanced Organic Solvent Nanofiltration Performance. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
10
|
A critical review on thin-film nanocomposite membranes enabled by nanomaterials incorporated in different positions and with diverse dimensions: Performance comparison and mechanisms. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Plisko T, Burts K, Zolotarev A, Bildyukevich A, Dmitrenko M, Kuzminova A, Ermakov S, Penkova A. Development and Investigation of Hierarchically Structured Thin-Film Nanocomposite Membranes from Polyamide/Chitosan Succinate Embedded with a Metal-Organic Framework (Fe-BTC) for Pervaporation. MEMBRANES 2022; 12:967. [PMID: 36295726 PMCID: PMC9611024 DOI: 10.3390/membranes12100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Thin-film composite membranes (TFC) obtained by the formation of a selective layer on a porous membrane-substrate via interfacial polymerization (IP) are indispensable for separation procedures in reverse osmosis, nanofiltration, pervaporation, and gas separation. Achieving high selectivity and permeability for TFC membranes is still one of the main challenges in membrane science and technology. This study focuses on the development of thin film nanocomposite (TFN) membranes with a hierarchically structured polyamide (PA)/chitosan succinate (ChS) selective layer embedded with a metal-organic framework of iron 1,3,5-benzenetricarboxylate (Fe-BTC) for the enhanced pervaporation dehydration of isopropanol. The aim of this work was to study the effect of Fe-BTC incorporation into the ChS interlayer and PA selective layer, obtained via IP, on the structure, properties, and performance of pervaporation TFN membranes. The structure and hydrophilicity of the developed TFN membranes were investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM), along with water contact angle measurements. The developed TFN membranes were studied in the pervaporation dehydration of isopropanol (12-30 wt % water). It was found that incorporation of Fe-BTC into the ChS interlayer yielded the formation of a smoother, more uniform, and defect-free PA ultrathin selective layer via IP, due to the amorpho-crystalline structure of particles serving as the amine storage reservoir and led to an increase in membrane selectivity toward water, and a slight decrease in permeation flux compared to the ChS interlayered TFC membranes. The best pervaporation performance was demonstrated by the TFN membrane with a ChS-Fe-BTC interlayer and the addition of 0.03 wt % Fe-BTC in the PA layer, yielding a permeation flux of 197-826 g·m-2·h-1 and 98.50-99.99 wt % water in the permeate, in the pervaporation separation of isopropanol/water mixtures (12-30 wt % water).
Collapse
Affiliation(s)
- Tatiana Plisko
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Katsiaryna Burts
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Andrey Zolotarev
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Alexandr Bildyukevich
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus
| | - Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Anna Kuzminova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Sergey Ermakov
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia
| |
Collapse
|
12
|
Microfiltration Membranes for the Removal of Bisphenol A from Aqueous Solution: Adsorption Behavior and Mechanism. WATER 2022. [DOI: 10.3390/w14152306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study mainly investigated the adsorption behavior and mechanism of microfiltration membranes (MFMs) with different physiochemical properties (polyamide (PA), polyvinylidene fluoride (PVDF), nitrocellulose (NC), and polytetrafluoroethylene (PTFE)) for bisphenol A (BPA). According to the adsorption isotherm and kinetic, the maximum adsorption capacity of these MFMs was PA (161.29 mg/g) > PVDF (80.00 mg/g) > NC (18.02 mg/g) > PTFE (1.56 mg/g), and the adsorption rate was PVDF (K1 = 2.373 h−1) > PA (K1 = 1.739 h−1) > NC (K1 = 1.086 h−1). The site energy distribution analysis showed that PA MFMs had the greatest adsorption sites, followed by PVDF and NC MFMs. The study of the adsorption mechanism suggested that the hydrophilic microdomain and hydrophobic microdomain had a micro-separation for PA and PVDF, which resulted in a higher adsorption capacity of PA and PVDF MFMs. The hydrophilic microdomain providing hydrogen bonding sites and the hydrophobic microdomain providing hydrophobic interaction, play a synergetic role in improving the BPA adsorption. Due to the hydrogen bonding force being greater than the hydrophobic force, more hydrogen bonding sites on the hydrophobic surface resulted in a higher adsorption capacity, but the hydrophobic interaction contributed to improving the adsorption rate. Therefore, the distribution of the hydrophilic microdomain and hydrophobic microdomain on MFMs can influence the adsorption capacity and the adsorption rate for BPA or its analogues. These consequences provide a novel insight for better understanding the adsorption behavior and mechanism on MFMs.
Collapse
|
13
|
Deng M, Pei T, Ge P, Zhu A, Zhang Q, Liu Q. Ultrathin sulfonated mesoporous interlayer facilitates to prepare highly-permeable polyamide nanofiltration membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Comparative analysis of separation methods used for the elimination of pharmaceuticals and personal care products (PPCPs) from water – A critical review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Zhu C, Zhang X, Li F, Zhao X. Effects of polyvinylidene fluoride substrate characteristics on the selectivity of thin‐film composite nanofiltration membrane. J Appl Polym Sci 2022. [DOI: 10.1002/app.52633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chenyu Zhu
- Lab of Environmental Science & Technology, INET Tsinghua University Beijing People's Republic of China
| | - Xue Zhang
- Lab of Environmental Science & Technology, INET Tsinghua University Beijing People's Republic of China
| | - Fuzhi Li
- Lab of Environmental Science & Technology, INET Tsinghua University Beijing People's Republic of China
| | - Xuan Zhao
- Lab of Environmental Science & Technology, INET Tsinghua University Beijing People's Republic of China
| |
Collapse
|
16
|
Nijmeijer K, Oymaci P, Lubach S, Borneman Z. Apple Juice, Manure and Whey Concentration with Forward Osmosis Using Electrospun Supported Thin-Film Composite Membranes. MEMBRANES 2022; 12:membranes12050456. [PMID: 35629782 PMCID: PMC9146530 DOI: 10.3390/membranes12050456] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/22/2022]
Abstract
Forward osmosis (FO), using the osmotic pressure difference over a membrane to remove water, can treat highly foul streams and can reach high concentration factors. In this work, electrospun TFC membranes with a very porous open support (porosity: 82.3%; mean flow pore size: 2.9 µm), a dense PA-separating layer (thickness: 0.63 µm) covalently attached to the support and, at 0.29 g/L, having a very low specific reverse salt flux (4 to 12 times lower than commercial membranes) are developed, and their FO performance for the concentration of apple juice, manure and whey is evaluated. Apple juice is a low-fouling feed. Manure concentration fouls the membrane, but this results in only a small decrease in overall water flux. Whey concentration results in instantaneous, very severe fouling and flux decline (especially at high DS concentrations) due to protein salting-out effects in the boundary layer of the membrane, causing a high drag force resulting in lower water flux. For all streams, concentration factors of approximately two can be obtained, which is realistic for industrial applications.
Collapse
|
17
|
Chen Y, Sun R, Yan W, Wu M, Zhou Y, Gao C. Antibacterial polyvinyl alcohol nanofiltration membrane incorporated with Cu(OH) 2 nanowires for dye/salt wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152897. [PMID: 35031372 DOI: 10.1016/j.scitotenv.2021.152897] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
In many important industries, such as the textile printing industry, a large amount of dye/salt wastewater is often discharged, which can destroy the ecological environment of the water body. Membrane technology has a great potential in the treatment of environmental problems caused by dye/salt wastewater. Polyvinyl alcohol (PVA) nanofiltration (NF) membrane has a bright future in dye/salt wastewater treatment, however, works on this are rare. Herein, antibacterial PVA NF membrane incorporated with Cu(OH)2 nanowires for the dye/salt wastewater treatment is reported. The membrane was prepared via coating the solutions containing PVA, glutaraldehyde and Cu(OH)2 nanowires on the polyethersulfone ultrafiltration membrane. Cu(OH)2 nanowires has a diameter of 60 nm and was successfully introduced into the membrane. The introduction of nanowires improved the membrane hydrophilicity and roughness, which is conducive to the improvement of membrane flux. Membrane separation performance for one component solution and dye/salt solution were investigated. The introduction of Cu(OH)2 increases the flux of the membrane obviously (the highest increase is 178.78% (from 21.49 to 38.42 L·m-2·h-1·bar-1, for NaCl solution as the feed). Besides, the membrane doped with nanowires also possessed a high dye/salt selectivity. For one component solution, the dye removal rate was over 97.00% while the salt rejection was low (the lowest was 13.18% (NaCl)). For the dye/salt solution, the dye (Congo Red) rejection kept at a high level (98.91%) and the salt (NaCl) rejection was still low (13.71%), while the flux was also high (37.56 L·m-2·h-1·bar-1). The performance is superior to that of many membranes reported in previous works. Moreover, the Cu(OH)2 nanowires endowed the membrane with an improved and high antibacterial property. The sterilization rate of Escherichia coli and Staphylococcus aureus reached more than 99.99%.
Collapse
Affiliation(s)
- Yingdong Chen
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Rongze Sun
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Wentao Yan
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Mengyao Wu
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yong Zhou
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - CongJie Gao
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
18
|
Zha Z, He P, Zhao S, Guo R, Wang Z, Wang J. Interlayer-modulated polyamide composite membrane for organic solvent nanofiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Wang ZY, Xie F, Ding HZ, Huang W, Ma XH, Xu ZL. Effects of locations of cellulose nanofibers in membrane on the performance of positively charged membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
TFC solvent-resistant nanofiltration membrane prepared via a gyroid-like PE support coated with polydopamine/Tannic acid-Fe(III). J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Zoka L, Khoo YS, Lau WJ, Matsuura T, Narbaitz R, Ismail AF. Flux Increase Occurring When an Ultrafiltration Membrane Is Flipped from a Normal to an Inverted Position—Experiments and Theory. MEMBRANES 2022; 12:membranes12020129. [PMID: 35207054 PMCID: PMC8874773 DOI: 10.3390/membranes12020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
The effects of flipping membranes with hydrophilic/hydrophobic asymmetry are well documented in the literature, but not much is known on the impact of flipping a membrane with dense/porous layer asymmetry. In this work, the pure water flux (PWF) of a commercial polyethersulfone (PES) membrane and a ceramic ultrafiltration (UF) membrane was measured in the normal and inverted positions. Our experimental results showed that the PWF was two orders of magnitude higher when the PES membrane was flipped to the inverted position, while the increase was only two times for the ceramic membrane. The filtration experiments were also carried out using solutions of bovine serum albumin and poly(vinylpyrrolidone). A mathematical model was further developed to explain the PWF increase in the inverted position based on the Bernoulli’s rule, considering a straight cylindrical pore of small radius connected to a pore of larger radius in series. It was found by simulation that a PWF increase was indeed possible when the solid ceramic membrane was flipped, maintaining its pore geometry. The flow from a layer with larger pore size to a layer with smaller pore size occurred in the backwashing of the fouled membrane and in forward and pressure-retarded osmosis when the membrane was used with its active layer facing the draw solution (AL-DS). Therefore, this work is of practical significance for the cases where the direction of the water flow is in the inverted position of the membrane.
Collapse
Affiliation(s)
- Ladan Zoka
- Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON K1N 6N5, Canada; (L.Z.); (R.N.)
| | - Ying Siew Khoo
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia; (Y.S.K.); (A.F.I.)
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia; (Y.S.K.); (A.F.I.)
- Correspondence: (W.J.L.); (T.M.)
| | - Takeshi Matsuura
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON K1N 6N5, Canada
- Correspondence: (W.J.L.); (T.M.)
| | - Roberto Narbaitz
- Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, ON K1N 6N5, Canada; (L.Z.); (R.N.)
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia; (Y.S.K.); (A.F.I.)
| |
Collapse
|
22
|
Cheng X, Lai C, Li J, Zhou W, Zhu X, Wang Z, Ding J, Zhang X, Wu D, Liang H, Zhao C. Toward Enhancing Desalination and Heavy Metal Removal of TFC Nanofiltration Membranes: A Cost-Effective Interface Temperature-Regulated Interfacial Polymerization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57998-58010. [PMID: 34817167 DOI: 10.1021/acsami.1c17783] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Polyamide (PA) chemistry-based nanofiltration (NF) membranes have an important role in the field of seawater desalination and wastewater reclamation. Achieving an ultrathin and defect-free active layer via precisely controlled interfacial polymerization (IP) is an effective routine to improve the separation efficiencies of NF membranes. Herein, the morphologies and chemical structures of the thin-film composite (TFC) NF membranes were accurately regulated by tailoring the interfacial reaction temperature during the IP process. This strategy was achieved by controlling the temperature (-15, 5, 20, 35, and 50°) of the oil-phase solutions. The structural compositions, morphological variations, and separation features of the fabricated NF membranes were studied in detail. In addition, the formation mechanisms of the NF membranes featuring different PAs were also proposed and discussed. The temperature-assisted IP (TAIP) method greatly changed the compositions of the resultant PA membranes. A very smooth and thin PA film was obtained for the NF membranes fabricated at a low interfacial temperature; thus, a high 19.2 L m-2 h-1 bar-1 of water permeance and 97.7% of Na2SO4 rejection were observed. With regard to the NF membranes obtained at a high interfacial temperature, a lower water permeance and higher salt rejection with fewer membrane defects were achieved. Impressively, the high interfacial temperature-assisted NF membranes exhibited uniform coffee-ring-like surface morphologies. The special surface-featured NF membrane showed superior separation for selected heavy metals. Rejections of 93.9%, 97.9%, and 87.7% for Cu2+, Mn2+, and Cd2+ were observed with the optimized membrane. Three cycles of fouling tests indicated that NF membranes fabricated at low temperatures exhibited excellent antifouling behavior, whereas a high interface temperature contributed to the formation of NF membranes with high fouling tendency. This study provides an economical, facile, and universal TAIP strategy for tailoring the performances of TFC PA membranes for environmental water treatment.
Collapse
Affiliation(s)
- Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Cunxian Lai
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Jinyu Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Weiwei Zhou
- Shandong Urban Construction Vocational College, Jinan 250103, China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Zihui Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junwen Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinyu Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Congcong Zhao
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
23
|
Mokarizadeh H, Moayedfard S, Maleh MS, Mohamed SIGP, Nejati S, Esfahani MR. The role of support layer properties on the fabrication and performance of thin-film composite membranes: The significance of selective layer-support layer connectivity. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119451] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Li X, Wang Z, Han X, Liu Y, Wang C, Yan F, Wang J. Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: A review. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119765] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
25
|
Wang T, Wang J, Zhao Z, Zheng X, Li J, Liu H, Zhao Z. Bio-inspired Fabrication of Anti-fouling and Stability of Nanofiltration Membranes with a Poly(dopamine)/Graphene Oxide Interlayer. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tao Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Jin Wang
- Administrative Committee of Wuhan East Lake High-tech Development Zone, Wuhan 430075, Hubei province, P. R. China
| | - Zhenzhen Zhao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Xi Zheng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Jiding Li
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Helei Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Zhiping Zhao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| |
Collapse
|
26
|
Khoo YS, Lau WJ, Liang YY, Yusof N, Fauzi Ismail A. Surface modification of PA layer of TFC membranes: Does it effective for performance Improvement? J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Bandehali S, Parvizian F, Ruan H, Moghadassi A, Shen J, Figoli A, Adeleye AS, Hilal N, Matsuura T, Drioli E, Hosseini SM. A planned review on designing of high-performance nanocomposite nanofiltration membranes for pollutants removal from water. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Impact of pilot-scale PSF substrate surface and pore structural properties on tailoring seawater reverse osmosis membrane performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119395] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
29
|
Jain H, Garg MC. Fabrication of polymeric nanocomposite forward osmosis membranes for water desalination—A review. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2021; 23:101561. [DOI: 10.1016/j.eti.2021.101561] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
|
30
|
Wang D, Zhang Y, Cai Z, You S, Sun Y, Dai Y, Wang R, Shao S, Zou J. Corn Stalk-Derived Carbon Quantum Dots with Abundant Amino Groups as a Selective-Layer Modifier for Enhancing Chlorine Resistance of Membranes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22621-22634. [PMID: 33950689 DOI: 10.1021/acsami.1c04777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Low permeability and chlorine resistance of normal thin-film composite (TFC) membranes restrict their practical applications in many fields. This study reports the preparation of a high chlorine-resistant TFC membrane for forward osmosis (FO) by incorporating corn stalk-derived N-doped carbon quantum dots (N-CQDs) into the selective polyamide (PA) layer to construct a polydopamine (PDA) sub-layer (PTFCCQD). Membrane modification is characterized by surface morphology, hydrophilicity, Zeta potential, and roughness. Results show that TFCCQD (without PDA pretreatment) and PTFCCQD membranes possess greater negative surface charges and thinner layer-thickness (less than 68 nm). With N-CQDs and PDA pretreatment, the surface roughness of the PTFCCQD membrane decreases significantly with the co-existence of microsized balls and flocs with a dense porous structure. With the variation of concentration and type of draw solution, the PTFCCQD membrane exhibits an excellent permeability with low J(reverse salt flux)/J(water flux) values (0.1-0.25) due to the enhancement of surface hydrophilicity and the shortening of permeable paths. With 16,000 ppm·h chlorination, reverse salt flux of the PTFCCQD membrane (8.4 g m-2 h-1) is far lower than those of TFCCQD (136.2 g m-2 h-1), PTFC (127.6 g m-2 h-1), and TFC (132 g m-2 h-1) membranes in FO processes. The decline of salt rejection of the PTFCCQD membrane is only 8.2%, and the normalized salt rejection maintains 0.918 in the RO system (16,000 ppm·h chlorination). Super salt rejection is ascribed to the existence of abundant N-H bonds (N-CQDs), which are preferentially chlorinated by free chlorine to reduce the corrosion of the PA layer. The structure of the PA layer is stable during chlorination also due to the existence of various active groups grafted on the surface. This study may pave a new direction for the preparation of durable biomass-derivative (N-CQD)-modified membranes to satisfy much more possible applications.
Collapse
Affiliation(s)
- Di Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Ying Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Zhuang Cai
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Yubo Sun
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Ying Dai
- School of Civil Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
| | - Rongyue Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Siliang Shao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Jinlong Zou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
31
|
Hu Y, Li Q, Guo Y, Zhu L, Zeng Z, Xiong Z. Nanofiltration‐like forward osmosis membranes on in‐situ mussel‐modified polyvinylidene fluoride porous substrate for efficient salt/dye separation. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yi‐Ning Hu
- Faculty of Printing, Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo China
| | - Qiao‐Mei Li
- Faculty of Printing, Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an China
| | - Yan‐Feng Guo
- Faculty of Printing, Packaging Engineering and Digital Media Technology Xi'an University of Technology Xi'an China
| | - Li‐Jing Zhu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo China
| | - Zhi‐Xiang Zeng
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo China
| | - Zhu Xiong
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering Guangzhou University Guangzhou Guangdong China
| |
Collapse
|
32
|
Zheng K, Zhou S, Cheng Z, Huang G. Polyvinyl chloride/quaternized poly phenylene oxide substrates supported thin-film composite membranes: Enhancement of forward osmosis performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Einarsson SJ, Wu B. Thermal associated pressure-retarded osmosis processes for energy production: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143731. [PMID: 33279189 DOI: 10.1016/j.scitotenv.2020.143731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/25/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
Climate change is an existential threat to global environments and human life. To achieve global mean temperature rise of below 1.5 °C, increasing utilization of renewable energy and minimizing CO₂ emission from fossil fuel industries have been emphasized by the United Nations. Pressure-retarded osmosis (PRO) has displayed its technical feasibility in capturing renewable energy from the salinity gradient of two streams through a semipermeable membrane. Towards achieving economic feasible PRO, process optimization, waste stream/heat utilization, and hybrid PRO processes have been attempted by theoretically modelling and experimental examination. Among these efforts, the thermal associated PRO processes have received great attention due to their improved power generation. In this paper, we aim to provide a comprehensive review on thermal associated PRO processes, focusing on the role of thermal behaviour in both stand-alone PRO and hybrid PRO processes (e.g. PRO-membrane distillation, PRO-thermosiphon, PRO-solar pond). Meanwhile, thermal associated draw solution development has been highlighted. Finally, a combination of PRO with high temperature/high pressure geothermal waste gas as draw solution is proposed and its technical and economic feasibility is discussed, especially under Icelandic scenario.
Collapse
Affiliation(s)
- Sigurður John Einarsson
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland
| | - Bing Wu
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland.
| |
Collapse
|
34
|
Zhang X, Li F, Zhang P, Zhu C, Zhao X. The role of interlayers in enlarging the flux of GO membranes. NANOTECHNOLOGY 2020; 31:505708. [PMID: 33021234 DOI: 10.1088/1361-6528/abae2e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A graphene oxide (GO) membrane can be easily made by filtering a GO solution onto a supporting layer, and such a membrane is effective at adsorbing ions. But low flux and a high work pressure become an obstacle for its application in wastewater treatment. In this study, a positively charged mixture of carbon nanotubes and chitosan (CNTS) served as an interlayer to improve the GO membrane's flux. The three-layer membrane is known as MCG, while one without an interlayer is known as MG. For MCG and MG with the same GO load, the water flux of MCG reaches 2-8 times larger than that of MG. A better water permeability is consistently detected for MCG, with a contact angle descent speed of 3.3°/s, which is significantly faster than that of MG (0.5°/s). The ion rejections of MCG and MG are mostly attributed to GO adsorption, which stay at the same level. The flux varies with GO load, CNTS load and membrane dryness, while the ion rejection is correlated with the GO load. Optimized membrane fabrication conditions are suggested as being a CNTS load of 0.72 g m-2 and a GO load of 0.4 g m-2. A 'gap' mechanism is suggested to explain the interlayer effects. The rougher interlayer surface produces gaps between the GO and CNTS layers, which results in the faster water permeation and higher flux of MCG. These results demonstrate that it is possible to fabricate high flux GO membranes by adding a controlled-roughness interlayer.
Collapse
Affiliation(s)
- Xue Zhang
- Lab of Environmental Science & Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Fuzhi Li
- Lab of Environmental Science & Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Peilin Zhang
- Lab of Environmental Science & Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, People's Republic of China
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Chenyu Zhu
- Lab of Environmental Science & Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xuan Zhao
- Lab of Environmental Science & Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
35
|
Progress of Interfacial Polymerization Techniques for Polyamide Thin Film (Nano)Composite Membrane Fabrication: A Comprehensive Review. Polymers (Basel) 2020; 12:polym12122817. [PMID: 33261079 PMCID: PMC7760071 DOI: 10.3390/polym12122817] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 01/12/2023] Open
Abstract
In this paper, we review various novel/modified interfacial polymerization (IP) techniques for the fabrication of polyamide (PA) thin film composite (TFC)/thin film nanocomposite (TFN) membranes in both pressure-driven and osmotically driven separation processes. Although conventional IP technique is the dominant technology for the fabrication of commercial nanofiltration (NF) and reverse osmosis (RO) membranes, it is plagued with issues of low membrane permeability, relatively thick PA layer and susceptibility to fouling, which limit the performance. Over the past decade, we have seen a significant growth in scientific publications related to the novel/modified IP techniques used in fabricating advanced PA-TFC/TFN membranes for various water applications. Novel/modified IP lab-scale studies have consistently, so far, yielded promising results compared to membranes made by conventional IP technique, in terms of better filtration efficiency (increased permeability without compensating solute rejection), improved chemical properties (crosslinking degree), reduced surface roughness and the perfect embedment of nanomaterials within selective layers. Furthermore, several new IP techniques can precisely control the thickness of the PA layer at sub-10 nm and significantly reduce the usage of chemicals. Despite the substantial improvements, these novel IP approaches have downsides that hinder their extensive implementation both at the lab-scale and in manufacturing environments. Herein, this review offers valuable insights into the development of effective IP techniques in the fabrication of TFC/TFN membrane for enhanced water separation.
Collapse
|
36
|
A Review of CFD Modelling and Performance Metrics for Osmotic Membrane Processes. MEMBRANES 2020; 10:membranes10100285. [PMID: 33076290 PMCID: PMC7602433 DOI: 10.3390/membranes10100285] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 01/10/2023]
Abstract
Simulation via Computational Fluid Dynamics (CFD) offers a convenient way for visualising hydrodynamics and mass transport in spacer-filled membrane channels, facilitating further developments in spiral wound membrane (SWM) modules for desalination processes. This paper provides a review on the use of CFD modelling for the development of novel spacers used in the SWM modules for three types of osmotic membrane processes: reverse osmosis (RO), forward osmosis (FO) and pressure retarded osmosis (PRO). Currently, the modelling of mass transfer and fouling for complex spacer geometries is still limited. Compared with RO, CFD modelling for PRO is very rare owing to the relative infancy of this osmotically driven membrane process. Despite the rising popularity of multi-scale modelling of osmotic membrane processes, CFD can only be used for predicting process performance in the absence of fouling. This paper also reviews the most common metrics used for evaluating membrane module performance at the small and large scales.
Collapse
|
37
|
Zheng K, Zhou S, Cheng Z, Huang G. Thin‐film composite forward osmosis membrane prepared from polyvinyl chloride/cellulose carbamate substrate and its potential application in brackish water desalination. J Appl Polym Sci 2020. [DOI: 10.1002/app.49939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ke Zheng
- School of Civil Engineering and Transportation South China University of Technology Guangzhou, Guangdong China
- School of Environment and Energy South China University of Technology Guangzhou, Guangdong China
| | - Shaoqi Zhou
- School of Civil Engineering and Transportation South China University of Technology Guangzhou, Guangdong China
- Guizhou Institute of Biology, Guizhou Academy of Sciences Guiyang, Guizhou China
- School of Environment and Energy South China University of Technology Guangzhou, Guangdong China
- State Key Laboratory of Subtropical Building Science South China University of Technology Guangzhou, Guangdong China
| | - Zuqin Cheng
- School of Environment and Energy South China University of Technology Guangzhou, Guangdong China
| | - Guoru Huang
- School of Civil Engineering and Transportation South China University of Technology Guangzhou, Guangdong China
- State Key Laboratory of Subtropical Building Science South China University of Technology Guangzhou, Guangdong China
| |
Collapse
|
38
|
Dai R, Li J, Wang Z. Constructing interlayer to tailor structure and performance of thin-film composite polyamide membranes: A review. Adv Colloid Interface Sci 2020; 282:102204. [PMID: 32650145 DOI: 10.1016/j.cis.2020.102204] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 11/29/2022]
Abstract
Thin-film composite (TFC) structured membranes based on polyamide (PA) chemistry is the gold standard of nanofiltration and reverse osmosis-based technologies for water purification and desalination. Constructing interlayer between porous substrate and PA layer is a promising strategy to address the ubiquitous trade-off between permeability and selectivity, which is typically encountered by conventional TFC PA membranes. The progress in the interlayer benefits the precise control of interfacial polymerization process, which therefore can tailor the structure and performance of advanced TFC PA membranes. This review critically summarizes the recent advances in TFC PA membranes mediated by interlayer. The mechanisms of interlayer regulating the IP process and PA structure are first discussed based on available literature. Structure and performance of novel TFC PA membranes based on three kinds of interlayers, i.e., organic coatings, nanomaterial and nanocomposite interlayers, are systematically reviewed. Finally, perspectives and future efforts needed are proposed for interlayer based TFC PA membranes. This review offers comprehensive understanding and useful guidance on the rational design of advanced membranes mediated by interlayers for desalination and water purification.
Collapse
Affiliation(s)
- Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jiayi Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
39
|
Toward enhancing the separation and antifouling performance of thin-film composite nanofiltration membranes: A novel carbonate-based preoccupation strategy. J Colloid Interface Sci 2020; 571:155-165. [DOI: 10.1016/j.jcis.2020.03.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 01/26/2023]
|
40
|
Lian X, Liu W, Xie J, Shi Q, Yao S, Guo Y, Zhang Y. Enhancing the permeability of reverse osmosis membrane by embedding the star‐like rigid supports in the substrate. J Appl Polym Sci 2020. [DOI: 10.1002/app.49557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiangyang Lian
- College of Materials Science and Engineering North China University of Science and Technology Tangshan Hebei China
| | - Wanjun Liu
- College of Science North China University of Science and Technology Tangshan Hebei China
| | - Jianqiang Xie
- College of Materials Science and Engineering North China University of Science and Technology Tangshan Hebei China
| | - Qiang Shi
- College of Materials Science and Engineering North China University of Science and Technology Tangshan Hebei China
| | - Shaowei Yao
- College of Materials Science and Engineering North China University of Science and Technology Tangshan Hebei China
| | - Yuexin Guo
- College of Pharmacy North China University of Science and Technology Tangshan Hebei China
| | - Yufeng Zhang
- School of Environmental and Municipal Engineering Tianjin Chengjian University Tianjin China
| |
Collapse
|
41
|
Porous organic polymer embedded thin-film nanocomposite membranes for enhanced nanofiltration performance. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117982] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Factors Affecting the Performance of Membrane Osmotic Processes for Bioenergy Development. ENERGIES 2020. [DOI: 10.3390/en13020481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Forward osmosis (FO) and pressure-retarded osmosis (PRO) have gained attention recently as potential processes to solve water and energy scarcity problems with advantages over pressure-driven membrane processes. These processes can be designed to produce bioenergy and clean water at the same time (i.e., wastewater treatment with power generation). Despite having significant technological advancement, these bioenergy processes are yet to be implemented in full scale and commercialized due to its relatively low performance. Hence, massive and extensive research has been carried out to evaluate the variables in FO and PRO processes such as osmotic membrane, feed solutions, draw solutions, and operating conditions in order to maximize the outcomes, which include water flux and power density. However, these research findings have not been summarized and properly reviewed. The key parts of this review are to discuss the factors influencing the performance of FO and PRO with respective resulting effects and to determine the research gaps in their optimization with the aim of further improving these bioenergy processes and commercializing them in various industrial applications.
Collapse
|