1
|
Liu N, Liu D, Li Y, Zhang X, He J, Jiang Y, Wang Y, Ma Y, Jin H, Shen L. Effects and mechanisms of substance P on the proliferation and angiogenic differentiation of bone marrow mesenchymal stem cells: Bioinformatics and in vitro experiments. Genomics 2023; 115:110679. [PMID: 37423397 DOI: 10.1016/j.ygeno.2023.110679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/25/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
The slight release of substance P (SP) from the end of peripheral nerve fibers causes a neurogenic inflammatory reaction, promotes vascular dilation and increases vascular permeability. However, whether SP can promote the angiogenesis of bone marrow mesenchymal stem cells (BMSCs) under high glucose conditions has not been reported. This study analyzed the targets, biological processes and molecular mechanisms underlying the effects of SP on BMSCs. BMSCs cultured in vitro were divided into a normal control group, high glucose control group, high glucose SP group and high glucose Akt inhibitor group to verify the effects of SP on BMSCs proliferation, migration and angiogenic differentiation. SP was found to act on 28 targets of BMSCs and participate in angiogenesis. Thirty-six core proteins, including AKT1, APP, BRCA1, CREBBP and EGFR, were identified. In a high glucose environment, SP increased the BMSCs proliferation optical density value and cell migration number and reduced the BMSCs apoptosis rate. In addition, SP induced BMSCs to highly express the CD31 protein, maintain the wall structure integrity of the matrix glue mesh and promote increases in the number of matrix glue meshes. These experiments showed that in a high glucose environment, SP acts on 28 targets of BMSCs that encode core proteins, such as AKT1, APP and BRCA1, and improves BMSCs proliferation, migration and angiogenic differentiation through the Akt signaling pathway.
Collapse
Affiliation(s)
- Na Liu
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Danyang Liu
- Department of Histology & Embryology, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Yongtao Li
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Xiaodong Zhang
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Jun He
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Yang Jiang
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Yang Wang
- Department of physiology, Qiqihar Medical University, No. 333, Basic Medical Research Center, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Yong Ma
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Haifeng Jin
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China; Basic Medical Research Center, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China.
| | - Lei Shen
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China; Basic Medical Research Center, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China.
| |
Collapse
|
4
|
Substance-P Inhibits Cardiac Microvascular Endothelial Dysfunction Caused by High Glucose-Induced Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10071084. [PMID: 34356317 PMCID: PMC8301094 DOI: 10.3390/antiox10071084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes is characterized by high glucose (HG) levels in the blood circulation, leading to exposure of the vascular endothelium to HG conditions. Hyperglycemia causes oxidative stress via excessive reactive oxygen species (ROS) production in the endothelium, which leads to cellular dysfunction and the development of diabetic vascular diseases. Substance-P (SP) is an endogenous peptide involved in cell proliferation and migration by activating survival-related signaling pathways. In this study, we evaluated the role of SP in cardiac microvascular endothelial cells (CMECs) in HG-induced oxidative stress. CMECs were treated with diverse concentrations of glucose, and then the optimal dose was determined. Treatment of CMECs with HG reduced their viability and induced excessive ROS secretion, inactivation of PI3/Akt signaling, and loss of vasculature-forming ability in vitro. Notably, HG treatment altered the cytokine profile of CMECs. However, SP treatment inhibited the HG-mediated aggravation of CMECs by restoring viability, free radical balance, and paracrine potential. SP-treated CMECs retained the capacity to form compact and long stretching-tube structures. Collectively, our data provide evidence that SP treatment can block endothelial dysfunction in hyperglycemia and suggest the possibility of using SP for treating diabetic complications as an antioxidant.
Collapse
|
5
|
Piao J, Park JS, Hwang DY, Hong HS, Son Y. Substance P blocks β-aminopropionitrile-induced aortic injury through modulation of M2 monocyte-skewed monocytopoiesis. Transl Res 2021; 228:76-93. [PMID: 32835906 DOI: 10.1016/j.trsl.2020.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/27/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
Aortic injuries, including aortic aneurysms and dissections, are fatal vascular diseases with distinct histopathological features in the aortic tissue such as inflammation-induced endothelial dysfunction, infiltration of immune cells, and breakdown of the extracellular matrix. Few treatments are available for treating aortic aneurysms and dissections; thus, basic and clinical studies worldwide have been attempted to inhibit disease progression. Substance P (SP) exerts anti-inflammatory effects and promotes restoration of the damaged endothelium, leading to vasculature protection and facilitation of tissue repair. This study was conducted to explore the protective effects of systemically injected SP on thoracic aortic injury (TAI). A TAI animal model was induced by orally administering β-aminopropionitrile to rats for 6 weeks. β-aminopropionitrile blocked crosslinking ECM in aorta to cause structural alteration with inflammation within 1 week and then, induced aortic dissection within 4 weeks of initiating treatment, leading to mortality within 6 weeks. Treatment of TAI rats with SP-induced anti-inflammatory responses systemically and locally, possibly by enriching anti-inflammatory M2 monocytes in the spleen and peripheral blood at early phase of aortic injury due to β-aminopropionitrile. SP-induced immune suppression finally prevented the development of aortic dissection by limiting inflammation-mediated aortic destruction. Taken together, these results suggest that SP treatment can block aortic injury by controlling the immune-cell profile and suppressing proinflammatory responses during the initial stage of vascular disease progression.
Collapse
Affiliation(s)
- Jiyuan Piao
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Yong In, South Korea
| | - Jeong Seop Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Dae Yeon Hwang
- East-West Medical Research Institute, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, South Korea
| | - Hyun Sook Hong
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, South Korea; East-West Medical Research Institute, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, South Korea.
| | - Youngsook Son
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Yong In, South Korea.
| |
Collapse
|
6
|
Park JS, Piao J, Park G, Hong HS. Substance-P Restores Cellular Activity of ADSC Impaired by Oxidative Stress. Antioxidants (Basel) 2020; 9:E978. [PMID: 33053897 PMCID: PMC7601553 DOI: 10.3390/antiox9100978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 02/08/2023] Open
Abstract
Oxidative stress induces cellular damage, which accelerates aging and promotes the development of serious illnesses. Adipose-derived stem cells (ADSCs) are novel cellular therapeutic tools and have been applied for tissue regeneration. However, ADSCs from aged and diseased individuals may be affected in vivo by the accumulation of free radicals, which can impair their therapeutic efficacy. Substance-P (SP) is a neuropeptide that is known to rescue stem cells from senescence and inflammatory attack, and this study explored the restorative effect of SP on ADSCs under oxidative stress. ADSCs were transiently exposed to H2O2, and then treated with SP. H2O2 treatment decreased ADSC cell viability, proliferation, and cytokine production and this activity was not recovered even after the removal of H2O2. However, the addition of SP increased cell viability and restored paracrine potential, leading to the accelerated repopulation of ADSCs injured by H2O2. Furthermore, SP was capable of activating Akt/GSK-3β signaling, which was found to be downregulated following H2O2 treatment. This might contribute to the restorative effect of SP on injured ADSCs. Collectively, SP can protect ADSCs from oxidant-induced cell damage, possibly by activating Akt/GSK-3β signaling in ADSCs. This study supports the possibility that SP can recover cell activity from oxidative stress-induced dysfunction.
Collapse
Affiliation(s)
- Jeong Seop Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Jiyuan Piao
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Yong In 17104, Korea; (J.P.); (G.P.)
| | - Gabee Park
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Yong In 17104, Korea; (J.P.); (G.P.)
| | - Hyun Sook Hong
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea;
- East-West Medical Research Institute, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
7
|
Abstract
Type 2 diabetic mellitus (T2DM) is characterized by systemic inflammation and insulin resistance due to obesity, and this leads to critical complications, including retinopathy and nephropathy. This study explored the therapeutic effect of substance-p (SP), a neuropeptide, on T2DM progression and its complications. To examine whether SP affects glucose metabolism, lipid metabolism, systemic inflammation, and retinopathy, Otsuka Long-Evans Tokushima Fatty rats (OLETF, 27 weeks old) with chronic inflammation, obesity, and impaired bone marrow stem cell pool was selected. SP was intravenously injected and its effect was evaluated at 2 and 4 weeks after the SP injection. OLETF had typical symptoms of T2DM, including obesity, chronic inflammation, and poor glycemic control. However, SP treatment inhibited the body-weight gain and reduced circulating levels of free fatty acid, cholesterol, and triglyceride, ameliorating the obese environment. SP could suppress inflammation and rejuvenate bone marrow stem cell in OLETF rats. SP-mediated metabolic/immunological change could resolve hyperglycemia and insulin resistance. Histopathological analysis confirmed that SP treatment alleviated the dysfunction of target tissue with insulin resistance. OLETF rats have retinal damage from 27 weeks of age, which was reliably aggravated at 31 weeks. However, SP treatment could restore the damaged retina, sustaining its structure similarly to that of non-diabetic rats. In conclusion, systemic application of SP is capable contribute to the inhibition of the progression of T2DM and diabetic retinopathy.
Collapse
|