1
|
Vanlalhmingmawia C, Tiwari D. Novel cubical Ag(NP) decorated titanium dioxide supported bentonite thin film in the efficient removal of bisphenol A using visible light. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32942-32956. [PMID: 36472744 DOI: 10.1007/s11356-022-24467-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The persistent endocrine-disrupting chemical bisphenol A is posing serious health concerns; hence, it is known to be an emerging and potential water contaminant. The present investigation aims to synthesize novel cubical Ag(NP) decorated titanium dioxide-supported bentonite (Ag/TiO2@Clay) nanocomposite using a novel synthetic process. The nanocomposite materials were characterized by several analytical methods viz., transmission electron microscopy (TEM), X-ray diffraction (XRD) analyses, energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) and diffuse reflectance spectroscopy (DRS). Further, the photocatalytic removal of bisphenol A was conducted utilizing the thin film catalyst under the LED (light emitting diode; visible light) and UV-A (ultra violet-A) light sources. The parametric studies solution pH (6.0-12.0), pollutant concentrations (1.0-20.0 mg/L), and the interaction of several scavengers and co-existing ions are studied extensively to demonstrate the insights of the removal mechanism. The mineralization of bisphenol A and repeated use of the thin film catalyst showed the potential usage of photocatalysts in the devised large-scale operations. Similarly, the natural matrix treatment was performed to evaluate the suitability of the process for real implications.
Collapse
Affiliation(s)
| | - Diwakar Tiwari
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl-796004, India.
| |
Collapse
|
2
|
Vanlalhmingmawia C, Tiwari D, Kim DJ. Novel nanocomposite thin film in the efficient removal of antibiotics using visible light: Insights of photocatalytic reactions and stability of thin film in real water implications. ENVIRONMENTAL RESEARCH 2023; 218:115007. [PMID: 36493806 DOI: 10.1016/j.envres.2022.115007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Novel clay (bentonite) supported Ag0 nanoparticles (NPs) doped TiO2 nanocomposite (Clay/TiO2/Ag0(NPs)) thin film was obtained by using template synthesis method. The nanocomposite material is decorated with cubical Ag0(NPs) and utilised successfully in the photocatalytic degradation of tetracycline (TC) and sulfamethazine (SMZ) from aqueous solutions utilizing visible light and UV-A radiations. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS) analyses were used to characterise the nanocomposite materials. Diffusion reflectance spectroscopy (DRS) was utilised to determine the bandgap energies of the materials and also to confirm that Ag0(NPs) was successfully doped with TiO2. The nanocomposite material showed highly efficient photocatalytic activity for the breaking down of TC/SMZ under visible light irradiation by the enhanced electron-hole separation and adsorption of antibiotics at the vicinity of the catalyst. The oxidative degradation of TC/SMZ were shown to be highly dependent on the pH, initial concentration of TC/SMZ, and various co-existing ions. Reusability test of Clay/Ag0(NPs)/TiO2 nanocomposite revealed that the activity did not decline with repeated use. Treatment of TC and SMZ in real water system further enhanced the application potential of the novel catalysts for the treatment of full-scale wastewater polluted with these antibiotics.
Collapse
Affiliation(s)
| | - Diwakar Tiwari
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl-796004, India.
| | - Dong-Jin Kim
- Department of Environmental Sciences and Biotechnology & Institute of Energy and Environment, Hallym University, Chuncheon 24252, Republic of Korea.
| |
Collapse
|
3
|
Zhang B, Liu Y, Zhu H, Gu D, Zhou K, Hao J. Enhanced visible light photocatalytic performance of a novel FeIn 2S 4 microsphere/BiOBr nanoplate heterojunction with a Z-scheme configuration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13438-13448. [PMID: 36129652 DOI: 10.1007/s11356-022-22929-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
The rational design of heterojunction photocatalysts is an effective way to improve semiconductor photocatalytic activity. The simple solvothermal method was used to successfully prepare visible light-driven FeIn2S4 microsphere/BiOBr nanoplate binary heterojunction photocatalysts with varying FeIn2S4 contents. The crystal structure, morphology, surface composition, specific surface area, charge separation, and optical properties of the as-prepared photocatalysts were investigated using a variety of analytical methods. In the photocatalytic degradation of rhodamine B, the FeIn2S4/BiOBr photocatalysts obtained a degradation efficiency of 96% within 60 min, which was approximately 5.33 and 2.59 times higher than pure FeIn2S4 and BiOBr, respectively. Radical trapping experiments and ESR measurements revealed the main active species (·OH, ·O2-, and h+) produced during photocatalytic degradation. The increased photocatalytic activity was due to the formation of Z-scheme heterojunctions between FeIn2S4 and BiOBr, which contributed to the improved effective charge separation of photogenerated charge carriers, augmented specific surface area, and enhanced redox capacity. It is expected that our current study will provide a hopeful way for future environmental remediation research.
Collapse
Affiliation(s)
- Biao Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yu Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Hongyu Zhu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Dongxu Gu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Kanghong Zhou
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jianyuan Hao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
4
|
Green and facile synthesis of heterojunction nanocatalyst: Insights and mechanism of antibiotics removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Vanlalhmingmawia C, Lalhriatpuia C, Tiwari D, Kim DJ. Noble metal-doped TiO 2 thin films in the efficient removal of Mordant Orange-1: insights of degradation process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51732-51743. [PMID: 35247174 DOI: 10.1007/s11356-021-17568-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
Nanocomposite Ag0(NPs)/TiO2 is synthesised in a facile template method enabling nanoparticles of reduced Ag evenly distributed within the titania network. The morphological studies of nanocomposites were extensively performed employing SEM/EDX (scanning electron microscopy/energy dispersive X-ray), TEM (transmission electron microscopy) and AFM (atomic force microscopy). Moreover, the bandgap energies of materials were obtained using the diffuse reflectance spectrometer (DRS). The newer insights in the photocatalytic elimination of Mordant Orange-1 (MO1) was obtained using the nanocomposite thin film for various parametric studies utilising the UV-A and LED illuminations. The kinetics of degradation of MO1 was performed, and the rate constant was favoured at lower concentrations of MO1. Moreover, the elimination efficiency of MO1 was favoured with a decrease in solution pH. The NPOC results inferred that a fairly good extent of MO1 was mineralised using a thin-film catalyst for both the UV-A and LED illuminations. The minimal effect of several co-ions demonstrated the applicability of thin films in the elimination of MO1, and the stability of the thin film has shown the potential applicability of thin-film catalysts. Further, the mechanism of photocatalytic degradation was demonstrated with the radical scavenger studies and ascertained the reaction pathways.
Collapse
Affiliation(s)
| | - Chhakchhuak Lalhriatpuia
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, 796001, India
| | - Diwakar Tiwari
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl, 796004, India.
| | - Dong-Jin Kim
- Department of Environment Science and Biotechnology, Hallym University, Chuncheon, 24252, Republic of Korea
| |
Collapse
|
6
|
Kumar A, Choudhary P, Kumar A, Camargo PHC, Krishnan V. Recent Advances in Plasmonic Photocatalysis Based on TiO 2 and Noble Metal Nanoparticles for Energy Conversion, Environmental Remediation, and Organic Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2101638. [PMID: 34396695 DOI: 10.1002/smll.202101638] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/06/2021] [Indexed: 05/24/2023]
Abstract
Plasmonic photocatalysis has emerged as a prominent and growing field. It enables the efficient use of sunlight as an abundant and renewable energy source to drive a myriad of chemical reactions. For instance, plasmonic photocatalysis in materials comprising TiO2 and plasmonic nanoparticles (NPs) enables effective charge carrier separation and the tuning of optical response to longer wavelength regions (visible and near infrared). In fact, TiO2 -based materials and plasmonic effects are at the forefront of heterogeneous photocatalysis, having applications in energy conversion, production of liquid fuels, wastewater treatment, nitrogen fixation, and organic synthesis. This review aims to comprehensively summarize the fundamentals and to provide the guidelines for future work in the field of TiO2 -based plasmonic photocatalysis comprising the above-mentioned applications. The concepts and state-of-the-art description of important parameters including the formation of Schottky junctions, hot electron generation and transfer, near field electromagnetic enhancement, plasmon resonance energy transfer, scattering, and photothermal heating effects have been covered in this review. Synthetic approaches and the effect of various physicochemical parameters in plasmon-mediated TiO2 -based materials on performances are discussed. It is envisioned that this review may inspire and provide insights into the rational development of the next generation of TiO2 -based plasmonic photocatalysts with target performances and enhanced selectivities.
Collapse
Affiliation(s)
- Ajay Kumar
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Priyanka Choudhary
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Ashish Kumar
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Pedro H C Camargo
- University of Helsinki, Department of Chemistry, A.I. Virtasen aukio 1, Helsinki, Finland
| | - Venkata Krishnan
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| |
Collapse
|
7
|
Abstract
This work is devoted to the investigation of the discoloration of the synthetic and industrial effluent, using a quarry residue (MbP), which is a material naturally composed of mixed oxides, compared to zinc oxide (ZnO), acting as photocatalysts and adsorbents. The optimization of the pH and catalyst concentration parameters was carried out, and the industrial effluent was then treated by photocatalytic reactions, adsorption, and photolysis. Industrial effluent was supplied by a packaging company and was collected for a period of seven consecutive days, showing the oscillation of the parameters in the process. The material characterizations were obtained by scanning electron microscopy (SEM-EDS), X-Ray diffraction (XRD), and photoacoustic spectroscopy (PAS). The results indicated that the composition of the quarry waste is mainly silica and has Egap 2.16 eV. The quarry residue as photocatalyst was active for the artificial effluent (synthetic dye solution), with a maximum of 98% discoloration, and as an adsorbent for industrial effluent, with a maximum of 57% of discoloration. Although the quarry residue has shown results lower than ZnO, it is considered a promising material in adsorption processes and photocatalytic reactions for discoloration of aqueous solutions.
Collapse
|
8
|
Tiwari D, Lee SM, Kim DJ. New insights in photocatalytic removal of Alizarin Yellow using reduced Ce 3+/TiO 2 catalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8373-8383. [PMID: 33058080 DOI: 10.1007/s11356-020-11087-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/30/2020] [Indexed: 05/24/2023]
Abstract
The present communication aims to obtain a novel Ce3+/TiO2 thin film in a single step facile method using the in situ template process. The material was characterized by the XRD (X-ray diffraction), XPS (X-ray photoelectron spectroscopy), TEM (transmission electron microscope), and AFM (atomic force microscope) analyses. The thin film catalyst was intended to introduce in the degradation of one of potential dye Alizarin Yellow from aqueous solutions using the UV-A radiations. The mechanisms of degradation along with the physicochemical parametric studies were conducted extensively. The mineralization of pollutant and the replicate use of catalysts further enhance the applicability of present communication. Additionally, the real matrix treatment was conducted to simulate the treatment process.
Collapse
Affiliation(s)
- Diwakar Tiwari
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl, 796004, India.
| | - Seung Mok Lee
- Department of Health and Environment, Catholic Kwandong University, 24, Beomil-ro 579beon-gil, Gangneung, 210-701, Republic of Korea
| | - Dong-Jin Kim
- Department of Environmental Science & Biotechnology, Hallym University, Chuncheon, 24252, Republic of Korea
| |
Collapse
|
9
|
Zhou R, Zhang T, Zhou R, Mai-Prochnow A, Ponraj SB, Fang Z, Masood H, Kananagh J, McClure D, Alam D, Ostrikov KK, Cullen PJ. Underwater microplasma bubbles for efficient and simultaneous degradation of mixed dye pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:142295. [PMID: 33182177 DOI: 10.1016/j.scitotenv.2020.142295] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Complete degradation of mixtures of organic pollutants is a major challenge due to their diverse degradation pathways. In this work, a novel microplasma bubble (MPB) reactor was developed to generate plasma discharges inside small forming bubbles as an effective mean of delivering reactive species for the degradation of the target organic contaminants. The results show that the integration of plasma and bubbles resulted in efficient degradation for all azo, heterocyclic, and cationic dyes, evidenced by the outstanding energy efficiency of 13.0, 18.1 and 22.1 g/kWh with 3 min of processing, in degrading alizarin yellow (AY), orange II (Orng-II) and methylene blue (MB), individually. The MPB treatment also effectively and simultaneously degraded the dyes in their mixtures such as AY + Orng-II, AY + MB and AY + Orng-II + MB. Scavenger assays revealed that the short-lived reactive species, including the hydroxyl (OH) and superoxide anion (O2-) radicals, played the dominant role in the degradation of the pollutants. Possible degradation pathways were proposed based on the intermediate products detected during the degradation process. The feasibility of this proposed strategy was further evaluated using other common water pollutants. Reduced toxicity was confirmed by the observed increases in human cell viability for the treated water. This work could support the future development of high performance- and energy-efficient wastewater abatement technologies.
Collapse
Affiliation(s)
- Renwu Zhou
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| | - Tianqi Zhang
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| | - Rusen Zhou
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia; School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Anne Mai-Prochnow
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| | - Sri Balaji Ponraj
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| | - Zhi Fang
- College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Hassan Masood
- Particle and Catalysis Research Group, School of Chemical Engineering, University of New South Wales, NSW 2052, Australia
| | - John Kananagh
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| | - Dale McClure
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| | - David Alam
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Patrick J Cullen
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
10
|
Khataee A, Fazli A, Zakeri F, Joo SW. Synthesis of a high-performance Z-scheme 2D/2D WO3@CoFe-LDH nanocomposite for the synchronic degradation of the mixture azo dyes by sonocatalytic ozonation process. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|