1
|
Malik US, Duan Q, Niazi MBK, Jahan Z, Liaqat U, Sher F, Gan Y, Hou H. Vanillin cross-linked hydrogel membranes interfacial reinforced by carbon nitride nanosheets for enhanced antibacterial activity and mechanical properties. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
2
|
Modified sulfonated polyphenylsulfone proton exchange membrane with enhanced fuel cell performance: A review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Simultaneous improvement of anion conductivity and cell durability through the formation of dense ion clusters of F-doped graphitic carbon nitride/quaternized poly(phenylene oxide) composite membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120384] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
4
|
Wang Y, Liu L, Liu Y, Li N, Hu Z, Chen S. Double-filler composite sulfonated poly(aryl ether ketone) membranes with graphite carbon nitride and graphene oxide as polyelectrolyte for fuel cells. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Safikhani A, Vatanpour V, Habibzadeh S, Saeb MR. Application of graphitic carbon nitrides in developing polymeric membranes: A review. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Cui Y, An X, Zhang S, Tang Q, Lan H, Liu H, Qu J. Emerging graphitic carbon nitride-based membranes for water purification. WATER RESEARCH 2021; 200:117207. [PMID: 34020332 DOI: 10.1016/j.watres.2021.117207] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Membrane separation is a promising technology that can effectively remove various existing contaminants from water with low energy consumption and small carbon footprint. The critical issue of membrane technology development is to obtain a low-cost, stable, tunable and multifunctional material for membrane fabrication. Graphitic carbon nitride (g-C3N4) has emerged as a promising membrane material, owing to the unique structure characteristics and outstanding catalytic activity. This review paper outlined the advanced material strategies used to regulate the molecule structure of g-C3N4 for membrane separation. The presentative progresses on the applications of g-C3N4-based membranes for water purification have been elaborated. Essentially, we highlighted the innovation integration of physical separation, catalysis and energy conversion during water purification, which was of great importance for the sustainability of water treatment techniques. Finally, the continuing challenges of g-C3N4-based membranes and the possible breakthrough directions in the future research was prospected.
Collapse
Affiliation(s)
- Yuqi Cui
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoqiang An
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shun Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qingwen Tang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huachun Lan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
A composite of graphitic carbon nitride and Vulcan carbon as an effective catalyst support for Ni in direct urea fuel cells. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|