1
|
Williams AP, Sokolova AV, Faber JM, Butler CSG, Starck P, Ainger NJ, Tuck KL, Dagastine RR, Tabor RF. Influence of Surfactant Structure on Polydisperse Formulations of Alkyl Ether Sulfates and Alkyl Amidopropyl Betaines. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:211-220. [PMID: 38154121 DOI: 10.1021/acs.langmuir.3c02380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Surfactants provide detergency, foaming, and texture in personal care formulations, yet the micellization of typical industrial primary and cosurfactants is not well understood, particularly in light of the polydisperse nature of commercial surfactants. Synergistic interactions are hypothesized to drive the formation of elongated wormlike self-assemblies in these mixed surfactant systems. Small-angle neutron scattering, rheology, and pendant drop tensiometry are used to examine surface adsorption, viscoelasticity, and self-assembly structure for wormlike micellar formulations comprising cocoamidopropyl betaine, and its two major components laurylamidopropyl betaine and oleylamidopropyl betaine, with sodium alkyl ethoxy sulfates. The tail length of sodium alkyl ethoxy sulfates was related to their ability to form wormlike micelles in electrolyte solutions, indicating that a tail length greater than 10 carbons is required to form wormlike micelles in NaCl solutions, with the decyl homologue unable to form elongated micelles and maintaining a low viscosity even at 20 wt % surfactant loading with 4 wt % NaCl present. For these systems, the incorporation of a disperse ethoxylate linker does not enable shorter chain surfactants to elongate into wormlike micelles for single-component systems; however, it could increase the interactions between surfactants in mixed surfactant systems. For synergy in surfactant mixing, the nonideal regular solution theory is used to study the sulfate/betaine mixtures. Tail mismatch appears to drive lower critical micelle concentrations, although tail matching improves synergy with larger relative reductions in critical micelle concentrations and greater micelle elongation, as seen by both tensiometric and scattering measurements.
Collapse
Affiliation(s)
| | - Anna V Sokolova
- Australian Centre for Neutron Scattering, ANSTO, Lucas Heights, NSW 2234, Australia
| | - Jonathan M Faber
- School of Chemistry, Monash University, Clayton VIC 3800, Australia
| | - Calum S G Butler
- School of Chemistry, Monash University, Clayton VIC 3800, Australia
| | - Pierre Starck
- Unilever R&D Port Sunlight, Bebington, Wirral CH63 3JW, U.K
| | - Nick J Ainger
- Unilever R&D Port Sunlight, Bebington, Wirral CH63 3JW, U.K
| | - Kellie L Tuck
- School of Chemistry, Monash University, Clayton VIC 3800, Australia
| | - Raymond R Dagastine
- Department of Chemical Engineering, University of Melbourne, Parkville, VIC 3052, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton VIC 3800, Australia
| |
Collapse
|
2
|
Xue Y, Ma X, Feng X, Roberts S, Zhu G, Huang Y, Fan X, Fan J, Chen X. Temperature-Derived Purification of Gold Nano-Bipyramids for Colorimetric Detection of Tannic Acid. ACS APPLIED NANO MATERIALS 2023; 6:11572-11580. [PMID: 37469507 PMCID: PMC10353004 DOI: 10.1021/acsanm.3c01593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/13/2023] [Indexed: 07/21/2023]
Abstract
Gold nanostructures have attracted broad attention. Among various nanostructures, gold nanobipyramids have shown great potential in sensing, biomedicine, environmental protection, chemical catalysis, and optics due to their unique physical and optical properties and ease of chemical functionalization. Compared with other plasmonic nanostructures, gold nanobipyramids possess narrow optical resonances, stronger plasmonic local field enhancement, and size- and shape-dependent surface plasmon resonance. However, the synthesis and purification of homogeneous gold nanobipyramids are very challenging. The gold nanobipyramids synthesized via the commonly used seed-mediated growth method have low yields and are often coproduced with spherical nanoparticles. In this study, we reported a temperature-derived purification method for the isolation of gold bipyramids. In the presence of salt, by altering the temperature of the solution, large gold bipyramids can be separated from small spherical nanoparticles. As a result, a yield of as high as 97% gold nanobipyramids can be achieved through a single round of purification, and correspondingly, the ratio between the longitudinal surface plasmon resonance (LSPR) and transverse SPR intensity significantly increases to as high as 6.7. The purified gold nanobipyramids can be used as a colorimetric probe in the detection of tannic acid with a detection limit of 0.86 μM and a linear detection range from 1.25 to 37.5 μM.
Collapse
Affiliation(s)
- Yuxiang Xue
- School
of Engineering, Institute for Bioengineering, University of Edinburgh, The King’s Buildings, EH9 3JL Edinburgh, U.K.
| | - Xinyao Ma
- Department
of Materials Science and Engineering, City
University of Hong Kong, 83 Tat Chee Ave, 00000 Kowloon Tong, Hong Kong, SAR, P. R. China
| | - Xue Feng
- School
of Engineering, Institute for Bioengineering, University of Edinburgh, The King’s Buildings, EH9 3JL Edinburgh, U.K.
| | - Sam Roberts
- School
of Engineering, Institute for Bioengineering, University of Edinburgh, The King’s Buildings, EH9 3JL Edinburgh, U.K.
| | - Guangyu Zhu
- Department
of Chemistry, City University of Hong Kong, 83 Tat Chee Ave, 00000 Kowloon Tong, Hong
Kong, SAR, P. R. China
| | - Yi Huang
- School
of Engineering, Institute for Materials Processing, University of Edinburgh, The King’s Buildings, EH9 3JL Edinburgh, U.K.
| | - Xianfeng Fan
- School
of Engineering, Institute for Materials Processing, University of Edinburgh, The King’s Buildings, EH9 3JL Edinburgh, U.K.
| | - Jun Fan
- Department
of Materials Science and Engineering, City
University of Hong Kong, 83 Tat Chee Ave, 00000 Kowloon Tong, Hong Kong, SAR, P. R. China
| | - Xianfeng Chen
- School
of Engineering, Institute for Bioengineering, University of Edinburgh, The King’s Buildings, EH9 3JL Edinburgh, U.K.
| |
Collapse
|
3
|
Li P, Wu J, Cao S, Mao Y, Huo Y, Liu X. Synergistic interaction of α-olefin sodium sulfonate/cocamidopropyl betaine surfactant mixtures and preparation of wormlike micelles. J DISPER SCI TECHNOL 2023. [DOI: 10.1080/01932691.2023.2173225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Penghui Li
- China Research Institute of Daily Chemistry Co., Ltd, Taiyuan, China
| | | | - Shengti Cao
- China Research Institute of Daily Chemistry Co., Ltd, Taiyuan, China
| | - Yanfen Mao
- China Research Institute of Daily Chemistry Co., Ltd, Taiyuan, China
| | - Yueqing Huo
- China Research Institute of Daily Chemistry Co., Ltd, Taiyuan, China
| | - Xiaochen Liu
- China Research Institute of Daily Chemistry Co., Ltd, Taiyuan, China
| |
Collapse
|
4
|
Heshmati Aghda N, Zhang Y, Wang J, Lu A, Pillai AR, Maniruzzaman M. A Novel 3D Printing Particulate Manufacturing Technology for Encapsulation of Protein Therapeutics: Sprayed Multi Adsorbed-Droplet Reposing Technology (SMART). Bioengineering (Basel) 2022; 9:653. [PMID: 36354564 PMCID: PMC9687125 DOI: 10.3390/bioengineering9110653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 10/27/2023] Open
Abstract
Recently, various innovative technologies have been developed for the enhanced delivery of biologics as attractive formulation targets including polymeric micro and nanoparticles. Combined with personalized medicine, this area can offer a great opportunity for the improvement of therapeutics efficiency and the treatment outcome. Herein, a novel manufacturing method has been introduced to produce protein-loaded chitosan particles with controlled size. This method is based on an additive manufacturing technology that allows for the designing and production of personalized particulate based therapeutic formulations with a precise control over the shape, size, and potentially the geometry. Sprayed multi adsorbed-droplet reposing technology (SMART) consists of the high-pressure extrusion of an ink with a well determined composition using a pneumatic 3D bioprinting approach and flash freezing the extrudate at the printing bed, optionally followed by freeze drying. In the present study, we attempted to manufacture trypsin-loaded chitosan particles using SMART. The ink and products were thoroughly characterized by dynamic light scattering, rheometer, Scanning Electron Microscopy (SEM), and Fourier Transform Infra-Red (FTIR) and Circular Dichroism (CD) spectroscopy. These characterizations confirmed the shape morphology as well as the protein integrity over the process. Further, the effect of various factors on the production were investigated. Our results showed that the concentration of the carrier, chitosan, and the lyoprotectant concentration as well as the extrusion pressure have a significant effect on the particle size. According to CD spectra, SMART ensured Trypsin's secondary structure remained intact regardless of the ink composition and pressure. However, our study revealed that the presence of 5% (w/v) lyoprotectant is essential to maintain the trypsin's proteolytic activity. This study demonstrates, for the first time, the viability of SMART as a single-step efficient process to produce biologics-based stable formulations with a precise control over the particulate morphology which can further be expanded across numerous therapeutic modalities including vaccines and cell/gene therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Mohammed Maniruzzaman
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Labs, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78705, USA
| |
Collapse
|
5
|
Luviano AS, Figueroa-Gerstenmaier S, Sarmiento-Gómez E, Rincón-Londoño N. “Non-disruptive Mixing of Cyclodextrins and Wormlike Micelles in the non-dilute regime”. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Pahari S, Liu S, Lee CH, Akbulut M, Kwon JSI. SAXS-guided unbiased coarse-grained Monte Carlo simulation for identification of self-assembly nanostructures and dimensions. SOFT MATTER 2022; 18:5282-5292. [PMID: 35789362 DOI: 10.1039/d2sm00601d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent studies have shown that solvated amphiphiles can form nanostructured self-assemblies called dynamic binary complexes (DBCs) in the presence of ions. Since the nanostructures of DBCs are directly related to their viscoelastic properties, it is important to understand how the nanostructures change under different solution conditions. However, it is challenging to obtain a three-dimensional molecular description of these nanostructures by utilizing conventional experimental characterization techniques or thermodynamic models. To this end, we combined the structural data from small angle X-ray scattering (SAXS) experiments and thermodynamic knowledge from coarse-grained Monte Carlo (CGMC) simulations to identify the detailed three-dimensional nanostructure of DBCs. Specifically, unbiased CGMC simulations are performed with SAXS-guided initial conditions, which aids us to sample accurate nanostructures in a computationally efficient fashion. As a result, an elliptical bilayer nanostructure is obtained as the most probable nanostructure of DBCs whose dimensions are validated by scanning electron microscope (SEM) images. Then, utilizing the obtained molecular model of DBCs, we could also explain the pH tunability of the system. Overall, our results from SAXS-guided unbiased CGMC simulations highlight that using potential energy combined with SAXS data, we can distinguish otherwise degenerate nanostructures resulting from the inherent ambiguity of SAXS patterns.
Collapse
Affiliation(s)
- Silabrata Pahari
- Texas A&M University, Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Texas A&M Energy Institute, Texas A&M Energy Institute, 1617 Research Pkwy, College Station, TX 77843, USA
| | - Shuhao Liu
- Texas A&M University, Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Chi Ho Lee
- Texas A&M University, Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Texas A&M Energy Institute, Texas A&M Energy Institute, 1617 Research Pkwy, College Station, TX 77843, USA
| | - Mustafa Akbulut
- Texas A&M University, Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Texas A&M Energy Institute, Texas A&M Energy Institute, 1617 Research Pkwy, College Station, TX 77843, USA
| | - Joseph Sang-Il Kwon
- Texas A&M University, Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Texas A&M Energy Institute, Texas A&M Energy Institute, 1617 Research Pkwy, College Station, TX 77843, USA
| |
Collapse
|
7
|
|