1
|
Xiong ZW, Guo LN, Jiang H, Zhang Y, Gao Q, Li J, Chen S, Li X, Javaid MA, Li DQ, Xie H. A handy way for forming N-doped TiO 2/carbon from pectin and d,l-serine hydrazide hydrochloride. Int J Biol Macromol 2024; 277:134155. [PMID: 39098462 DOI: 10.1016/j.ijbiomac.2024.134155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
N-doped TiO2/carbon composites (N-TiPC) have shown excellent photodegradation performances to the organic contaminants but are limited by the multistage preparation (i.e., preparation of porous carbon, preparation of N-doped TiO2, and loading of N-doped TiO2 on porous carbon). Here, we develop a handy way by combining the Pickering emulsion-gel template route and chelation reaction of polysaccharides. The N-TiPC is obtained by calcinating pectin/Dl-serine hydrazide hydrochloride (SHH)-Ti4+ chelate and is further described by modern characterization techniques. The results show that the N atom is successfully doped into the TiO2 lattice, and the bandgap value of N-TiPC is reduced to 2.3 eV. Moreover, the particle size of N-TiPC remains about 10 nm. The configurations of the composites are simulated using DFT calculation. The photocatalytic experiments show that N-TiPC has a high removal efficiency for methylene blue (MB) and oxytetracycline hydrochloride (OTC-HCL). The removal ratios of MB (20 mg/L, 50 mL) and OTC-HCL (30 mg/L, 50 mL) are 99.41 % and 78.29 %, respectively. The cyclic experiments show that the photocatalyst has good stability. Overall, this study provides a handy way to form N-TiPC with enhanced photodegradation performances. It can also be promoted to other macromolecules such as cellulose and its derivatives, sodium alginate, chitosan, lignin, etc.
Collapse
Affiliation(s)
- Zi-Wei Xiong
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China
| | - Li-Na Guo
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China
| | - Hui Jiang
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China
| | - Yue Zhang
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China
| | - Qin Gao
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China
| | - Jun Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China.
| | - Sheng Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Xin Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Muhammad Asif Javaid
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| | - De-Qiang Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, PR China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou 310003, Zhejiang, PR China
| |
Collapse
|
2
|
Tong Q, Cai T, Yuan J, He D. Enhanced visible-light activation of persulfate for the removal of RhB by supported nano-(C,N,B)-tridoped TiO 2/copper foam mixed-crystals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1964-1979. [PMID: 38051489 DOI: 10.1007/s11356-023-31270-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/23/2023] [Indexed: 12/07/2023]
Abstract
Photocatalytic persulfate activation by TiO2 and its application in sewage treatment have aroused great interest because of its high decontamination ability and strong adaptability, but the low light energy utilization rate and poor recycling of TiO2 limited its practical application. Herein, by using C-, N-, and B-modified TiO2 and immobilizing it on copper foam, we prepared a new and efficient (C,N,B)-TiO2/copper foam photocatalyst with enhanced visible-light activation performance of persulfate for the removal of RhB. It almost completely degraded RhB within 15 min of UV-vis light photocatalysis-assisted persulfate oxidation reaction with TOC removal of 53.17% in 30 min and presented the excellent long-term recyclability and stability, which is much better or comparative than those photocatalysts in the related literatures. (C,N,B)-TiO2/copper foam exhibited the largest apparent rate constant (0.149 min-1), 1.16 times higher than (C,N,B)-TiO2 (0.128 min-1), and 2.40 times higher than that of TiO2 (0.062 min-1), respectively. C,N,B doping modified the crystalline phase of TiO2, narrowed its band gap, and reduced charge-carrier recombination rate. These, together with the synergistic effect between photocatalysis and persulfate activation for enhancing generation of active species, jointly promoted the performance enhancement of TiO2. The 1O2 was the primary oxidation active species for the degradation of RhB, and the radical species (SO4•-, •O2-, and •OH) could further accelerate the photocatalytic activation of persulfate reaction.
Collapse
Affiliation(s)
- Qin Tong
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- National Engineering Research Center for Nanotechnology, Shanghai, 200241, People's Republic of China
| | - Ting Cai
- National Engineering Research Center for Nanotechnology, Shanghai, 200241, People's Republic of China
| | - Jing Yuan
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China.
| | - Dannong He
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
3
|
Liu J, Duan S, Feng X, Jiang Y, Xiao Y, Zhang W, Liu Y, Zhou E, Zhang J, Liu Z. Conductive Polymer-Inorganic Polythiophene/Cd 0.5Zn 0.5S Heterojunction with Apace Charge Separation and Strong Light Absorption for Boosting Photocatalytic Activity. Inorg Chem 2023; 62:17241-17253. [PMID: 37820375 DOI: 10.1021/acs.inorgchem.3c02444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
In order to utilize the synergistic effect between a conductive polymer and an inorganic semiconductor to efficaciously enhance charge transfer and solve the problem of unsatisfactory performance of a single photocatalyst, thiophene (Th) was polymerized on the Cd0.5Zn0.5S nanoparticle surface to prepare a conductive polymer-inorganic polythiophene/Cd0.5Zn0.5S (PTh/CZS) heterostructrue through a simple in situ oxidation polymerization for the first time. The as-prepared PTh/CZS heterostructures significantly improved photocatalytic TCH degradation and hydrogen production activities. Especially, the 15PTh/CZS sample exhibited the optimal hydrogen production rate (18.45 mmol g-1 h-1), which was 2.51 times higher than pure Cd0.5Zn0.5S nanoparticles. In addition, 15PTh/CZS also showed very fast and efficient photodegradation ability for degrading 88% of TCH in 25 min. Moreover, the degradation rate (0.06229 min-1) was five times more than that of Cd0.5Zn0.5S. The π-π* transition characteristics, high optical absorption coefficient, wide absorption wavelength of PTh, the tight contact interface, and synergistic effect of PTh and Cd0.5Zn0.5S efficiently boosted charge transfer rate and increased the light absorption of PTh/CZS photocatalysts, which greatly enhanced the photocatalytic abilities. Besides, the mechanism of improved photocatalytic activities for TCH degradation and H2 production was also carefully proposed. Undoubtedly, this work would provide new insights into coupling conductive polymers to inorganic photocatalysts for achieving multifunctional applications in the field of photocatalysis.
Collapse
Affiliation(s)
- Jiaxing Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Siyao Duan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xintao Feng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yinhua Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yan Xiao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Wenli Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Ershuai Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jianming Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Zhanchao Liu
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| |
Collapse
|
4
|
Yu H, Shen X, Tan W, Zhang M, Lv J, Yang L, Zhong J, He G, Sun Z. Low temperature strategy for the synthesis of Ta3N5 and electrochemical deposition of Ag3PO4 to modify TiO2 as an advanced photoelectrocatalyst for oxygen evolution reactions. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Photocatalytic Fuel Cells for Simultaneous Wastewater Treatment and Power Generation: Mechanisms, Challenges, and Future Prospects. ENERGIES 2022. [DOI: 10.3390/en15093216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Technological advancement is accompanied by excessive consumption of fossil fuels and affluent uses of chemical substances in many sectors, including transportation and manufacturing companies, and so on. Being an exhaustible resource, the excessive use of fossil fuels and of chemical substances may lead to a serious energy crisis in the long run, and it may additionally impose environmental pollution. Attempts have been made in the solution of such serious issues from every nook and corner. Nonetheless, no method has been found to be a panacea in waste water treatment and subsequent beneficiaries. One of the attempts in the solution to such issues is the application of photocatalytic technology, which could serve as a dual function in environmental remediation and clean energy production. A photocatalytic fuel cell is a tool developed for the recovery of energy from organic wastes. A rational cell construction needs the fabrication of photoelectrodes, the design of a photoanode and a photocathode chamber, in addition to an ion-transport membrane for pollution treatment and electricity generation. In this review, comprehensive fundamental assessments and recent developments in the design of photocatalytic fuel cells, their applications, future prospects, and challenges are covered.
Collapse
|
6
|
Yu C, Hou J, Zhang B, Liu S, Pan X, Song H, Hou X, Yan Q, Zhou C, Liu G, Zhang Y, Xin Y. In-situ electrodeposition synthesis of Z-scheme rGO/g-C 3N 4/TNAs photoelectrodes and its degradation mechanism for oxytetracycline in dual-chamber photoelectrocatalytic system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114615. [PMID: 35131709 DOI: 10.1016/j.jenvman.2022.114615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The dual-chamber photoelectrocatalytic (PEC) system possess advantages in the degradation efficiency and processing cost of organic contaminants. In this study, TiO2 nanotube arrays modified by rGO and g-C3N4 (rGO/g-C3N4/TNAs) photoelectrodes were successfully prepared. The surface micromorphology, chemical structure, crystal structure, and basic element composition of rGO/g-C3N4/TNAs photoelectrodes were studied by SEM, FTIR, XRD, Raman, and XPS. UV-vis absorption, photoluminescence (PL) spectra, and photoelectrochemical (PECH) tests were used to explore the photoelectrochemical characteristics of rGO/g-C3N4/TNAs photoelectrodes. Under simulated sunlight illumination, the dual-chamber PEC system with external bias voltage was used to investigate the degradation of oxytetracycline (OTC) on rGO/g-C3N4/TNAs photoelectrodes. The results showed that rGO and g-C3N4 were successfully loaded on TNAs, and the separation efficiency of electrons and holes at rGO/g-C3N4/TNAs photoelectrodes was improved. The light absorption range of rGO/g-C3N4/TNAs photoelectrodes extends to the visible light region and has better light absorption performance. Compared with the photocatalytic process, when 1.2 V bias voltage was applied, the degradation efficiency of OTC in anode and cathode chambers in PEC were increased by 3.28% and 44.01% within 60 min, respectively. In addition, the anode and cathode chambers have different degradation effects on OTC. Both the external bias voltage and initial pH have significant effects in cathode chamber, but have little effect in photoanode chamber. The fluorescence excitation-emission matrix spectra and liquid chromatography-tandem mass spectrometry showed that there were different intermediates in the degradation process of OTC. This study indicated that for the dual-chamber PEC system, rGO/g-C3N4/TNAs photoelectrodes exhibited excellent photocatalytic performance and have potential application prospects in water environmental remediation.
Collapse
Affiliation(s)
- Chengze Yu
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jiaqi Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Bin Zhang
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shiqi Liu
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiangrui Pan
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Heng Song
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiangting Hou
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qinghua Yan
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chengzhi Zhou
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guocheng Liu
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yingjie Zhang
- School of Marine Science and Technology, Sino-Europe Membrane Technology Research Institute Harbin Institute of Technology, Weihai, 264209, China
| | - Yanjun Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
7
|
Wang H, Li X, Zhao X, Li C, Song X, Zhang P, Huo P, Li X. A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63910-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Zheng F, Dong F, Zhou L, Yu J, Luo X, Zhang X, Lv Z, Jiang L, Chen Y, Liu M. Cerium and carbon-sulfur codoped mesoporous TiO2 nanocomposites for boosting visible light photocatalytic activity. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|