1
|
Sinmez CC, Koca FD. Synthesizing hybrid copper phosphate (Cu 3(PO 4) 2) nanoflowers using Cu +2 and shed snakeskin: antioxidant, antibacterial, anticancer, guaiacol, anionic, and cationic dye degradation properties. J Biol Eng 2025; 19:1. [PMID: 39754227 PMCID: PMC11697820 DOI: 10.1186/s13036-024-00464-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/30/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Synthesis of organic@inorganic hNFs is achieved by the coordination of organic compounds containing amine, amide, and diol groups with bivalent metals. The use of bio-extracts containing these functional groups instead of expensive organic inputs such as DNA, enzymes, and protein creates advantages in terms of cost and applicability. In this study, the application potentials (antioxidant, antibacterial, anticancer, guaiacol, anionic, and cationic dye degradation) of hybrid (organic@inorganic) nanoflowers (hNFs) synthesized with Cu+2 and snakeskin (SSS) were proposed. RESULTS Morphology, presence, and composition of elements of Cu and SSS-coordinated hNFs (Cu@SSS hNFs) were shown through FE-SEM-EDX spectroscopy. According to FE-SEM findings, hNFs synthesized with 0.5 ml and 1 ml extract have diameters of 12.81 and 3 µm, respectively. Diffraction peaks of hNFs determined by XRD were consistent with JCPDS Card 00-022 -0548. Cu@SSS NFs showed antioxidant properties depending on time through DPPH scavenging behavior (ability (R2: 0.5612, IC50: 2.07 mg/ml). Cu@SSS hNFs synthesized coordination of SSS and Cu degraded (75%) methylene blue at the highest pH 9 condition. However, hNFs highest degraded (68%) brilliant blue in an acidic PBS medium. hNFs oxidized guaiacol depending on exposure time. Cu@SSS hNFs demonstrated antibacterial properties towards Gram (-/ +) pathogen strains (MIC: 60 µg/ml). The catalytic and antimicrobial properties of hNFs were mentioned by the Fenton reaction. The cytotoxicity of Cu@SSS hNFs on the lung carcinoma (A549) cell line was shown to be concentration-dependent by the MTT test assay (IC50: 56.4 µg/ml). CONCLUSION As a result, Cu-based hNFs synthesized by using an organic waste (SSS) might be improved for environmental and biomedical applications.
Collapse
Affiliation(s)
- Cagri Caglar Sinmez
- Department of History of Veterinary Medicine and Deontology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye.
| | - Fatih Doğan Koca
- Department of Aquatic Animals and Diseases, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
| |
Collapse
|
2
|
Prajapati BG, Verma K, Sharma S, Kapoor DU. Transforming cancer detection and treatment with nanoflowers. Med Oncol 2024; 41:295. [PMID: 39436526 DOI: 10.1007/s12032-024-02530-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024]
Abstract
Nanoflowers, an innovative class of nanoparticles with a distinctive flower-like structure, have garnered significant interest for their straightforward synthesis, remarkable stability, and heightened efficiency. Nanoflowers demonstrate versatile applications, serving as highly sensitive biosensors for rapidly and accurately detecting conditions such as diabetes, Parkinson's, Alzheimer's, and foodborne infections. Nanoflowers, with their intricate structure, show significant potential for targeted drug delivery and site-specific action, while also exhibiting versatility in applications such as enzyme purification, water purification from dyes and heavy metals, and gas sensing through materials like nickel oxide. This review also addresses the structural characteristics, surface modification, and operational mechanisms of nanoflowers. The nanoflowers play a crucial role in preventing premature drug leakage from nanocarriers. Additionally, the nanoflowers contribute to averting systemic toxicity and suboptimal therapy efficiency caused by hypoxia in the tumor microenvironment during chemotherapy and photodynamic therapy. This review entails the role of nanoflowers in cancer diagnosis and treatment. In the imminent future, the nanoflowers system is poised to revolutionize as a smart material, leveraging its exceptional surface-to-volume ratio to significantly augment adsorption efficiency across its intricate petals. This review delves into the merits and drawbacks of nanoflowers, exploring synthesis techniques, types, and their evolving applications in cancer.
Collapse
Affiliation(s)
- Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat, 384012, India
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Kanika Verma
- Division of Cardiology, Department of Internal Medicine, LSU Health Sciences Center, 1501 Kings Hwy, Shreveport, LA, 71103, USA
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, 304022, India.
| | - Devesh U Kapoor
- Dr. Dayaram Patel Pharmacy College, Bardoli, Gujarat, 394601, India.
| |
Collapse
|
3
|
Gwon K, Park JD, Lee S, Yu JS, Lee DN. Fabrication of silicon-based nickel nanoflower-encapsulated gelatin microspheres as an active antimicrobial carrier. Int J Biol Macromol 2024; 264:130617. [PMID: 38447829 DOI: 10.1016/j.ijbiomac.2024.130617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/02/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Local antibiotic application might mitigate the burgeoning problem of rapid emergence of antibiotic resistance in pathogenic microbes. To accomplish this, delivery systems must be engineered. Hydrogels have a wide range of physicochemical properties and can mimic the extracellular matrix, rendering them promising materials for local antibacterial agent application. Here, we synthesized antibacterial silicon (Si)-based nickel (Ni) nanoflowers (Si@Ni) and encapsulated them in gelatin methacryloyl (GelMA) using microfluidic and photo-crosslink technology, constructing uniform micro-sized hydrogel spheres (Si@Ni-GelMA). Si@Ni and Si@Ni-GelMA were characterized using X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Injectable Si@Ni-GelMA exhibited excellent antibacterial activities owing to the antibiotic effect of Ni against Pseudomonas aeruginosa, Klebsiella pneumoniae, and methicillin-resistant Staphylococcus aureus, while showing negligible cytotoxicity. Therefore, the Si@Ni-GelMA system can be used as drug carriers owing to their injectability, visible light-mediated crosslinking, degradation, biosafety, and superior antibacterial properties.
Collapse
Affiliation(s)
- Kihak Gwon
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Republic of Korea; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
| | - Jong-Deok Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Seonhwa Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Republic of Korea
| | - Jong-Sung Yu
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Do Nam Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Republic of Korea.
| |
Collapse
|
4
|
Lee SJ, Jang H, Lee DN. Recent advances in nanoflowers: compositional and structural diversification for potential applications. NANOSCALE ADVANCES 2023; 5:5165-5213. [PMID: 37767032 PMCID: PMC10521310 DOI: 10.1039/d3na00163f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/02/2023] [Indexed: 09/29/2023]
Abstract
In recent years, nanoscience and nanotechnology have emerged as promising fields in materials science. Spectroscopic techniques like scanning tunneling microscopy and atomic force microscopy have revolutionized the characterization, manipulation, and size control of nanomaterials, enabling the creation of diverse materials such as fullerenes, graphene, nanotubes, nanofibers, nanorods, nanowires, nanoparticles, nanocones, and nanosheets. Among these nanomaterials, there has been considerable interest in flower-shaped hierarchical 3D nanostructures, known as nanoflowers. These structures offer advantages like a higher surface-to-volume ratio compared to spherical nanoparticles, cost-effectiveness, and environmentally friendly preparation methods. Researchers have explored various applications of 3D nanostructures with unique morphologies derived from different nanoflowers. The nanoflowers are classified as organic, inorganic and hybrid, and the hybrids are a combination thereof, and most research studies of the nanoflowers have been focused on biomedical applications. Intriguingly, among them, inorganic nanoflowers have been studied extensively in various areas, such as electro, photo, and chemical catalysis, sensors, supercapacitors, and batteries, owing to their high catalytic efficiency and optical characteristics, which arise from their composition, crystal structure, and local surface plasmon resonance (LSPR). Despite the significant interest in inorganic nanoflowers, comprehensive reviews on this topic have been scarce until now. This is the first review focusing on inorganic nanoflowers for applications in electro, photo, and chemical catalysts, sensors, supercapacitors, and batteries. Since the early 2000s, more than 350 papers have been published on this topic with many ongoing research projects. This review categorizes the reported inorganic nanoflowers into four groups based on their composition and structure: metal, metal oxide, alloy, and other nanoflowers, including silica, metal-metal oxide, core-shell, doped, coated, nitride, sulfide, phosphide, selenide, and telluride nanoflowers. The review thoroughly discusses the preparation methods, conditions for morphology and size control, mechanisms, characteristics, and potential applications of these nanoflowers, aiming to facilitate future research and promote highly effective and synergistic applications in various fields.
Collapse
Affiliation(s)
- Su Jung Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University Seoul 01897 Korea
| | - Hongje Jang
- Department of Chemistry, Kwangwoon University Seoul 01897 Korea
| | - Do Nam Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University Seoul 01897 Korea
| |
Collapse
|
5
|
Gwon K, Lee S, Kim Y, Choi J, Kim S, Kim SJ, Hong HJ, Hwang Y, Mori M, Lee DN. Construction of a bioactive copper-based metal organic framework-embedded dual-crosslinked alginate hydrogel for antimicrobial applications. Int J Biol Macromol 2023; 242:124840. [PMID: 37169053 DOI: 10.1016/j.ijbiomac.2023.124840] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Metal-organic frameworks (MOFs) containing bioactive metals have the potential to exhibit antimicrobial activity by releasing metal ions or ligands through the cleavage of metal-ligand bonds. Recently, copper-based MOFs (Cu-MOFs) with sustained release capability, porosity, and structural flexibility have shown promising antimicrobial properties. However, for clinical use, the controlled release of Cu2+ over an extended time period is crucial to prevent toxicity. In this study, we developed an alginate-based antimicrobial scaffold and encapsulated MOFs within a dual-crosslinked alginate polymer network. We synthesized Cu-MOFs containing glutarate (Glu) and 4,4'-azopyridine (AZPY) (Cu(AZPY)-MOF) and encapsulated them in an alginate-based hydrogel through a combination of visible light-induced photo and calcium ion-induced chemical crosslinking processes. We confirmed Cu(AZPY)-MOF synthesis using scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, and thermogravimetric analysis. This antimicrobial hydrogel demonstrated excellent antibacterial and antifungal properties against two bacterial strains (MRSA and S. mutans, with >99.9 % antibacterial rate) and one fungal strain (C. albicans, with >78.7 % antifungal rate) as well as negligible cytotoxicity towards mouse embryonic fibroblasts, making it a promising candidate for various tissue engineering applications in biomedical fields.
Collapse
Affiliation(s)
- Kihak Gwon
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Republic of Korea; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
| | - Seonhwa Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Republic of Korea
| | - Youngmee Kim
- Department of Chemistry and Nano Science, NanoBio-Energy Materials Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jun Choi
- Department of Chemistry and Nano Science, NanoBio-Energy Materials Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sujin Kim
- Department of Chemistry and Nano Science, NanoBio-Energy Materials Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sung-Jin Kim
- Department of Chemistry and Nano Science, NanoBio-Energy Materials Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hye Jin Hong
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
| | - Youngmin Hwang
- Columbia Center for Human Development (CCHD), Pulmonary Allergy & Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Munemasa Mori
- Columbia Center for Human Development (CCHD), Pulmonary Allergy & Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Do Nam Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Republic of Korea.
| |
Collapse
|
6
|
Fabrication of novel polysaccharide hybrid nanoliposomes containing citral for targeting MRSA-infected wound healing. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Lee SJ, Jang H, Lee DN. Inorganic Nanoflowers—Synthetic Strategies and Physicochemical Properties for Biomedical Applications: A Review. Pharmaceutics 2022; 14:pharmaceutics14091887. [PMID: 36145635 PMCID: PMC9505446 DOI: 10.3390/pharmaceutics14091887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Nanoflowers, which are flower-shaped nanomaterials, have attracted significant attention from scientists due to their unique morphologies, facile synthetic methods, and physicochemical properties such as a high surface-to-volume ratio, enhanced charge transfer and carrier immobility, and an increased surface reaction efficiency. Nanoflowers can be synthesized using inorganic or organic materials, or a combination of both (called a hybrid), and are mainly used for biomedical applications. Thus far, researchers have focused on hybrid nanoflowers and only a few studies on inorganic nanoflowers have been reported. For the first time in the literature, we have consolidated all the reports on the biomedical applications of inorganic nanoflowers in this review. Herein, we review some important inorganic nanoflowers, which have applications in antibacterial treatment, wound healing, combinatorial cancer therapy, drug delivery, and biosensors to detect diseased conditions such as diabetes, amyloidosis, and hydrogen peroxide poisoning. In addition, we discuss the recent advances in their biomedical applications and preparation methods. Finally, we provide a perspective on the current trends and potential future directions in nanoflower research. The development of inorganic nanoflowers for biomedical applications has been limited to date. Therefore, a diverse range of nanoflowers comprising inorganic elements and materials with composite structures must be synthesized using ecofriendly synthetic strategies.
Collapse
Affiliation(s)
- Su Jung Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Korea
| | - Hongje Jang
- Department of Chemistry, Kwangwoon University, Seoul 01897, Korea
- Correspondence: (H.J.); (D.N.L.)
| | - Do Nam Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Korea
- Correspondence: (H.J.); (D.N.L.)
| |
Collapse
|
8
|
Gwon K, Park JD, Lee S, Choi WI, Hwang Y, Mori M, Yu JS, Lee DN. Injectable hyaluronic acid hydrogel encapsulated with Si-based NiO nanoflower by visible light cross-linking: Its antibacterial applications. Int J Biol Macromol 2022; 208:149-158. [PMID: 35304194 DOI: 10.1016/j.ijbiomac.2022.03.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 12/26/2022]
Abstract
Bacterial infections have become a severe threat to human health and antibiotics have been developed to treat them. However, extensive use of antibiotics has led to multidrug-resistant bacteria and reduction of their therapeutic effects. An efficient solution may be localized application of antibiotics using a drug delivery system. For clinical application, they need to be biodegradable and should offer a prolonged antibacterial effect. In this study, a new injectable and visible-light-crosslinked hyaluronic acid (HA) hydrogel loaded with silicon (Si)-based nickel oxide (NiO) nanoflowers (Si@NiO) as an antibacterial scaffold was developed. Si@NiO nanoflowers were synthesized using chemical bath deposition before encapsulating them in the HA hydrogel under a mild visible-light-crosslinking conditions to generate a Si@NiO-hydrogel. Si@NiO synthesis was confirmed using scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction. As-prepared Si@NiO-hydrogel exhibited enhanced mechanical properties compared to a control bare hydrogel sample. Moreover, Si@NiO-hydrogel exhibits excellent antibacterial properties against three bacterial strains (P. aeruginosa, K. pneumoniae, and methicillin-resistant Staphylococcus aureus (>99.9% bactericidal rate)) and negligible cytotoxicity toward mouse embryonic fibroblasts. Therefore, Si@NiO-hydrogel has the potential for use in tissue engineering and biomedical applications owing to its injectability, visible-light crosslink ability, degradability, biosafety, and superior antibacterial property.
Collapse
Affiliation(s)
- Kihak Gwon
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Republic of Korea; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55902, USA
| | - Jong-Deok Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Seonhwa Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Republic of Korea
| | - Won Il Choi
- Center for Convergence Bioceramic Materials, Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Youngmin Hwang
- Columbia Center for Human Development (CCHD), Pulmonary Allergy & Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Munemasa Mori
- Columbia Center for Human Development (CCHD), Pulmonary Allergy & Critical Care Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jong-Sung Yu
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Do Nam Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Republic of Korea.
| |
Collapse
|
9
|
Jampilek J, Kralova K. Advances in Nanostructures for Antimicrobial Therapy. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2388. [PMID: 35407720 PMCID: PMC8999898 DOI: 10.3390/ma15072388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Microbial infections caused by a variety of drug-resistant microorganisms are more common, but there are fewer and fewer approved new antimicrobial chemotherapeutics for systemic administration capable of acting against these resistant infectious pathogens. Formulation innovations of existing drugs are gaining prominence, while the application of nanotechnologies is a useful alternative for improving/increasing the effect of existing antimicrobial drugs. Nanomaterials represent one of the possible strategies to address this unfortunate situation. This review aims to summarize the most current results of nanoformulations of antibiotics and antibacterial active nanomaterials. Nanoformulations of antimicrobial peptides, synergistic combinations of antimicrobial-active agents with nitric oxide donors or combinations of small organic molecules or polymers with metals, metal oxides or metalloids are discussed as well. The mechanisms of actions of selected nanoformulations, including systems with magnetic, photothermal or photodynamic effects, are briefly described.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|