1
|
Chance R, Kang AS. Eukaryotic ribosome display for antibody discovery: A review. Hum Antibodies 2024; 32:107-120. [PMID: 38788063 DOI: 10.3233/hab-240001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Monoclonal antibody biologics have significantly transformed the therapeutic landscape within the biopharmaceutical industry, partly due to the utilisation of discovery technologies such as the hybridoma method and phage display. While these established platforms have streamlined the development process to date, their reliance on cell transformation for antibody identification faces limitations related to library diversification and the constraints of host cell physiology. Cell-free systems like ribosome display offer a complementary approach, enabling antibody selection in a completely in vitro setting while harnessing enriched cellular molecular machinery. This review aims to provide an overview of the fundamental principles underlying the ribosome display method and its potential for advancing antibody discovery and development.
Collapse
|
2
|
Shabani S, Moghadam MF, Gargari SLM. Isolation and characterization of a novel GRP78-specific single-chain variable fragment (scFv) using ribosome display method. Med Oncol 2021; 38:115. [PMID: 34390413 DOI: 10.1007/s12032-021-01561-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/18/2021] [Indexed: 01/07/2023]
Abstract
Glucose-regulated protein 78 (GRP78) is a well-characterized endoplasmic reticulum (ER) chaperon frequently overexpressed at the surface of tumor cells and associated with tumor survival, metastasis, and chemoresistance. Hence, potential GRP78 binders emerge as promising candidates for cancer therapy and diagnosis. We applied ribosome display to isolate a single-chain variable domain (scFv) specific for the C-terminal domain of a recombinant human GRP78 (CGRP). Six female BALB/c mice were immunized and then splenocyte mRNA was extracted. An scFv-ribosome display library was established by joining the amplified VH/Vκ fragments through a 72-bp linker using overlap extension PCR. Then, selection was performed by applying two rounds of eukaryotic ribosome display panning with stepwise decreased amount of CGRP. Ultimately, the selected scFv was characterized using the indirect-ELISA assay, competitive-ELISA assay, Western blotting, Surface Plasmon Resonance (SPR), and in-silico analyses. The constructed library had a length of ~ 1100 bp and the high-affinity scFvs were isolated using the outputs of the final panning round. Among 60 positive clones, GSF3 was selected and its expression, purification, and binding capacity was confirmed by SDS-PAGE and Western blotting. GSF3 exhibited an affinity of 13 × 107 M-1 to CGRP as assessed by SPR. Moreover, the in-silico analyses indicated that GSF3 binds the C-terminal domain of GRP78 through key residues engaged in antibody-antigen interactions. We found that ribosome display is a swift and reliable technique for specific and high-affinity scFv isolation. Moreover, our results suggest that GSF3 might be applied as a potential cancer immunotherapeutic and diagnostic tool if this approach is carefully followed by successful preclinical and clinical evaluations to validate the findings for further confirmation.
Collapse
Affiliation(s)
- Shima Shabani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115/111, Tehran, Iran
| | - Mehdi Forouzandeh Moghadam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115/111, Tehran, Iran.
| | | |
Collapse
|
3
|
Ribosome Display Technology: Applications in Disease Diagnosis and Control. Antibodies (Basel) 2020; 9:antib9030028. [PMID: 32605027 PMCID: PMC7551589 DOI: 10.3390/antib9030028] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022] Open
Abstract
Antibody ribosome display remains one of the most successful in vitro selection technologies for antibodies fifteen years after it was developed. The unique possibility of direct generation of whole proteins, particularly single-chain antibody fragments (scFvs), has facilitated the establishment of this technology as one of the foremost antibody production methods. Ribosome display has become a vital tool for efficient and low-cost production of antibodies for diagnostics due to its advantageous ability to screen large libraries and generate binders of high affinity. The remarkable flexibility of this method enables its applicability to various platforms. This review focuses on the applications of ribosome display technology in biomedical and agricultural fields in the generation of recombinant scFvs for disease diagnostics and control.
Collapse
|
4
|
Behring S, Hänsch R, Helmsing S, Schirrmann T, Schubert M. Screening for scFv-fragments that are stable and active in the cytosol. Hum Antibodies 2020; 28:149-157. [PMID: 32116242 DOI: 10.3233/hab-200402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Intrabodies are antibodies that are not secreted but bind to their antigens inside the cell producing them. Intrabodies targeting antigens in the endoplasmatic reticulum were successfully used in vitro and in vivo. However, many target antigens interesting for research or therapy are located in the reducing environment of the cytosol, where correct folding and formation of disulfide bonds cannot be ensured. The majority of different scFv fragments, when expressed in the cytosol of the cell, do not fold correctly, are not stable or cannot bind their antigen. Such scFv antibodies are therefore not suited as intrabodies.In this study, we evaluated fast and simple screening methods to identify scFv fragments that are stable and functional in the cytosol. We analyzed various phage display derived human scFv antibodies recognizing extracellular signal-regulated kinase 2 (Erk2) for stability and antigen binding under reducing and non-reducing conditions. Further, we developed an assay allowing to measure the interaction of the scFv intrabodies with their antigen in the cytosol of in living cells, by using a Split-Luciferase (Split-Luc) assay. ScFv fragments showing antigen binding in the cytosol could successfully be identified.
Collapse
Affiliation(s)
- Stefanie Behring
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Braunschweig, Germany
| | - Robert Hänsch
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Braunschweig, Germany
- Technische Universität Braunschweig, Institute of Plant Biology, Braunschweig, Germany
| | - Saskia Helmsing
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Braunschweig, Germany
| | - Thomas Schirrmann
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Braunschweig, Germany
- Yumab GmbH, Braunschweig, Germany
| | - Maren Schubert
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics, Braunschweig, Germany
| |
Collapse
|
5
|
Salimi F, Forouzandeh Moghadam M, Rajabibazl M. Development of a novel anti-HER2 scFv by ribosome display and in silico evaluation of its 3D structure and interaction with HER2, alone and after fusion to LAMP2B. Mol Biol Rep 2018; 45:2247-2256. [DOI: 10.1007/s11033-018-4386-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 09/12/2018] [Indexed: 12/31/2022]
|
6
|
Yarian F, Kazemi B, Bandehpour M. Identification and characterization of a novel single-chain variable fragment (scFv) antibody against Neisseria meningitidis factor H-binding protein (fHbp). J Med Microbiol 2018; 67:820-827. [PMID: 29737965 DOI: 10.1099/jmm.0.000744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Purpose. Neisseria meningitidis is the leading global cause of meningitis and sepsis. Detection, followed by identification, of bacterial pathogens is important in medicine and public health. In the present study, we used the ribosome display technique to select single-chain variable fragments (scFv) that are specific to the surface-exposed fHbp antigen of N. meningitidis. Methodology. The recombinant fHbp protein was used as the antigen for the immunization of BALB/c mice. Anti-fHbp VH/k chain ribosome display libraries were assembled by joining VH and k into the VH/k chain with a specially constructed linker by PCR overlap extension. The scFv library was panned against the recombinant fHbp protein by using a single round of the ribosome display method via a rabbit reticulocyte lysate system.Results/Key findings. The selected anti-fHbp antibody exhibited high affinity and specificity in the enzyme-linked immunosorbent assay (ELISA) and the whole bacterial cell enzyme-linked immunosorbent assay (Bact-ELISA).Conclusion. The affinity of the selected scFv was ~8.65×109 M-1. The isolated scFv can provide the basis for developing a diagnostic kit.
Collapse
Affiliation(s)
- Fatemeh Yarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran, Tehran, Iran
| |
Collapse
|
7
|
Chen Q, Tao T, Bie X, Lu F, Li Y, Lu Z. Characterization of a single-chain variable fragment specific to Cronobacter spp. from hybridoma based on outer membrane protein A. J Microbiol Methods 2016; 129:136-143. [DOI: 10.1016/j.mimet.2016.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 07/23/2016] [Accepted: 08/02/2016] [Indexed: 12/30/2022]
|
8
|
Abstract
Since the development of therapeutic antibodies the demand of recombinant human antibodies is steadily increasing. Traditionally, therapeutic antibodies were generated by immunization of rat or mice, the generation of hybridoma clones, cloning of the antibody genes and subsequent humanization and engineering of the lead candidates. In the last few years, techniques were developed that use transgenic animals with a human antibody gene repertoire. Here, modern recombinant DNA technologies can be combined with well established immunization and hybridoma technologies to generate already affinity maturated human antibodies. An alternative are in vitro technologies which enabled the generation of fully human antibodies from antibody gene libraries that even exceed the human antibody repertoire. Specific antibodies can be isolated from these libraries in a very short time and therefore reduce the development time of an antibody drug at a very early stage.In this review, we describe different technologies that are currently used for the in vitro and in vivo generation of human antibodies.
Collapse
|
9
|
Characterization of Anti-Citrinin Specific ScFvs Selected from Non-Immunized Mouse Splenocytes by Eukaryotic Ribosome Display. PLoS One 2015; 10:e0131482. [PMID: 26131718 PMCID: PMC4488840 DOI: 10.1371/journal.pone.0131482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/01/2015] [Indexed: 11/19/2022] Open
Abstract
Single chain variable fragments (scFvs) against citrinin (CIT) were selected from a scFv library constructed from the splenocytes of non-immunized mice by an improved eukaryotic ribosome display technology in this study. Bovine serum albumin (BSA)/ CIT-BSA and ovalbumin (OVA)/ CIT-OVA were used as the antigens to select specific anti-CIT scFvs. Eukaryotic in situ RT-PCR method was used to recover the selected mRNA after every affinity selection. After six rounds of ribosome display, expression vector pTIG-TRX carrying specific scFv DNAs were constructed and transformed into Escherichia coli BL21 (DE3) for protein expression. Thirteen positive clones were selected out of which three (designated 23, 68 and 109) showed high binding activity and specificity to CIT by indirect ELISA, while no clone showed binding activity with carrier proteins. The three scFvs showed high specificity to CIT and the cross reactivity with other mycotoxins was below 0.01% as determined by indirect competitive ELISA. These specific scFvs offer a potential novel immunoassay method for CIT residues. This study confirmed the effectiveness of the improved eukaryotic ribosome display system and could be used as a reference for the selection of scFvs specific to other small molecules using ribosome display.
Collapse
|
10
|
Xiangbao Y, Linquan W, Mingwen H, Fan Z, Kai W, Xin Y, Kaiyang W, Huaqun F. Humanized anti-VEGFR-2 ScFv-As2O3-stealth nanoparticles, an antibody conjugate with potent and selective anti-hepatocellular carcinoma activity. Biomed Pharmacother 2014; 68:597-602. [DOI: 10.1016/j.biopha.2014.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 04/16/2014] [Indexed: 12/14/2022] Open
|
11
|
XIN LIN, CAO JIAQING, LIU CHUAN, ZENG FEI, CHENG HUA, HU XIAOYUN, ZHU PEIQIAN, SHAO JIANGHUA. Selection of anti-cancer-associated gene single-chain variable fragments derived from gastric cancer patients using ribosome display. Mol Med Rep 2013; 8:631-7. [DOI: 10.3892/mmr.2013.1502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/20/2013] [Indexed: 11/06/2022] Open
|
12
|
Selection of Single Chain Variable Fragments Specific for the Human-Inducible Costimulator Using Ribosome Display. Appl Biochem Biotechnol 2012; 168:967-79. [DOI: 10.1007/s12010-012-9800-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 07/03/2012] [Indexed: 12/13/2022]
|
13
|
Luo Y, Xia Y. Selection of single-chain variable fragment antibodies against fenitrothion by ribosome display. Anal Biochem 2012; 421:130-7. [DOI: 10.1016/j.ab.2011.10.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/01/2011] [Accepted: 10/25/2011] [Indexed: 11/25/2022]
|
14
|
Abstract
The aim of this study was to construct a ribosome display library of single chain variable fragments (scFvs) associated with hepatocarcinoma and screen such a library for hepatocarcinoma-binding scFvs. mRNA was isolated from the spleens of mice immunized with hepatocellular carcinoma cell line HepG2. Heavy and k chain genes (VH and k) were amplified separately by RT-PCR, and an anti-HepG2 VH/k chain ribosome display library was constructed by assembling VH and k into the VH/k chain with a specially constructed linker by SOE-PCR. The VH/k chain library was transcribed and translated in vitro using a rabbit reticulocyte lysate system. In order to isolate specific scFvs, recognizing HepG2 negative selection on a normal hepatocyte line WRL-68 was carried out before three rounds of positive selection on HepG2. After three rounds of panning, cell enzyme-linked immunosorbent assay (ELISA) showed that one of the scFvs had high affinity for the HepG2 cell and lower affinity for the WRL-68 cell. In this study, we successfully constructed a native ribosome display library. Such a library would prove useful for direct intact cell panning using ribosome display technology. The selected scFv had a potential value for hepatocarcinoma treatment.
Collapse
|
15
|
Qi Y, Wu C, Zhang S, Wang Z, Huang S, Dai L, Wang S, Xia L, Wen K, Cao X, Wu Y, Shen J. Selection of anti-sulfadimidine specific ScFvs from a hybridoma cell by eukaryotic ribosome display. PLoS One 2009; 4:e6427. [PMID: 19641611 PMCID: PMC2712767 DOI: 10.1371/journal.pone.0006427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2009] [Accepted: 06/19/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Ribosome display technology has provided an alternative platform technology for the development of novel low-cost antibody based on evaluating antibiotics derived residues in food matrixes. METHODOLOGY/PRINCIPAL FINDINGS In our current studies, the single chain variable fragments (scFvs) were selected from hybridoma cell lines against sulfadimidine (SM(2)) by using a ribosome library technology. A DNA library of scFv antibody fragments was constructed for ribosome display, and then mRNA-ribosome-antibody (MRA) complexes were produced by a rabbit reticulocyte lysate system. The synthetic sulfadimidine-ovalbumin (SM(2)-OVA) was used as an antigen to pan MRA complexes and putative scFv-encoding genes were recovered by RT-PCR in situ following each panning. After four rounds of ribosome display, the expression vector pCANTAB5E containing the selected specific scFv DNA was constructed and transformed into Escherichia coli HB2151. Three positive clones (SAS14, SAS68 and SAS71) were screened from 100 clones and had higher antibody activity and specificity to SM(2) by indirect ELISA. The three specific soluble scFvs were identified to be the same molecular weight (approximately 30 kDa) by Western-blotting analysis using anti-E tag antibodies, but they had different amino acids sequence by sequence analysis. CONCLUSIONS/SIGNIFICANCE The selection of anti-SM(2) specific scFv by in vitro ribosome display technology will have an important significance for the development of novel immunodetection strategies for residual veterinary drugs.
Collapse
Affiliation(s)
- Yonghua Qi
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Animal Science, Henan Institute of Science and Technology, Xixiang, China
| | - Congming Wu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Suxia Zhang
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhanhui Wang
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Siyang Huang
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lei Dai
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shaochen Wang
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lining Xia
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urmuqi, China
| | - Kai Wen
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xingyuan Cao
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongning Wu
- Institute for Nutrition and Food Safety, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianzhong Shen
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
16
|
Screening of High-Affinity scFvs From a Ribosome Displayed Library Using BIAcore Biosensor. Appl Biochem Biotechnol 2008; 152:224-34. [DOI: 10.1007/s12010-008-8251-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 04/18/2008] [Indexed: 10/21/2022]
|
17
|
Kim JM, Shin HJ, Kim K, Lee MS. A pseudoknot improves selection efficiency in ribosome display. Mol Biotechnol 2007; 36:32-7. [PMID: 17827535 PMCID: PMC7090622 DOI: 10.1007/s12033-007-0017-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/05/2022]
Abstract
The size and diversity of ribosome display libraries depends upon stability of the complex formed between the ribosome, mRNA and translated protein. To investigate if mRNA secondary structure improves stability of the complex, we tested a pseudoknot, originating from the genomic RNA of infectious bronchitis virus (IBV), a member of the positive-stranded coronavirus group. We used the previously-isolated anti-DNA scFv, 3D8, as a target protein. During in vitro translation in rabbit reticulocyte lysate, we observed that incorporation of the pseudoknot into the mRNA resulted in production of a translational intermediate that corresponded to the expected size for ribosomal arrest at the pseudoknot. Complexes containing the mRNA pseudoknot exhibited a higher efficiency of affinity selection than that those without, indicating that the pseudoknot improves stability of the mRNA-ribosome-antibody complex in a eukaryotic translation system. Thus, in order to improve the efficiency of selection, this relatively short pseudoknot sequence could be incorporated into ribosome display.
Collapse
Affiliation(s)
- Jong-Myung Kim
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
| | - Ho-Joon Shin
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
| | - Kyongmin Kim
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
| | - Myung-Shin Lee
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
- The Armed Forces Medical Research Institute, P.O.B 78-503, Chumok-dong, Yuseong-gu, Daejeon, 305-153 South Korea
| |
Collapse
|
18
|
Selection of single chain fragments against the phytopathogen Xanthomonas axonopodis pv. citri by ribosome display. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2007.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Zahnd C, Amstutz P, Plückthun A. Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target. Nat Methods 2007; 4:269-79. [PMID: 17327848 DOI: 10.1038/nmeth1003] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ribosome display is an in vitro selection and evolution technology for proteins and peptides from large libraries. As it is performed entirely in vitro, there are two main advantages over other selection technologies. First, the diversity of the library is not limited by the transformation efficiency of bacterial cells, but only by the number of ribosomes and different mRNA molecules present in the test tube. Second, random mutations can be introduced easily after each selection round, as no library must be transformed after any diversification step. This allows facile directed evolution of binding proteins over several generations. A prerequisite for the selection of proteins from libraries is the coupling of genotype (RNA, DNA) and phenotype (protein). In ribosome display, this link is accomplished during in vitro translation by stabilizing the complex consisting of the ribosome, the mRNA and the nascent, correctly folded polypeptide. The DNA library coding for a particular library of binding proteins is genetically fused to a spacer sequence lacking a stop codon. This spacer sequence, when translated, is still attached to the peptidyl tRNA and occupies the ribosomal tunnel, and thus allows the protein of interest to protrude out of the ribosome and fold. The ribosomal complexes are allowed to bind to surface-immobilized target. Whereas non-bound complexes are washed away, mRNA of the complexes displaying a binding polypeptide can be recovered, and thus, the genetic information of the binding polypeptides is available for analysis. Here we describe a step-by-step procedure to perform ribosome display selection using an Escherichia coli S30 extract for in vitro translation, based on the work originally described and further refined in our laboratory. A protocol that makes use of eukaryotic in vitro translation systems for ribosome display is also included in this issue.
Collapse
Affiliation(s)
- Christian Zahnd
- Biochemisches Institut der Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
20
|
Abstract
Ribosome display presents an innovative in vitro technology for the rapid isolation and evolution of high-affinity peptides or proteins. Displayed proteins are bound to and recovered from target molecules in multiple rounds of selection in order to enrich for specific binding proteins. No transformation step is necessary, which could lead to a loss of library diversity. A cycle of display and selection can be performed in one day, enabling the existing gene repertoire to be rapidly scanned. Proteins isolated from the panning rounds can be further modified through random or directed molecular evolution for affinity maturation, as well as selected for characteristics such as protein stability, folding and functional activity. Recently, the field of display technologies has become more prominent due to the generation of new scaffolds for ribosome display, isolation of high-affinity human antibodies by phage display, and their implementation in the discovery of novel protein-protein interactions. Applications for this technology extend into the broad field of antibody engineering, proteomics, and synthetic enzymes for diagnostics and therapeutics in cancer, autoimmune and infectious diseases, neurodegenerative diseases and inflammatory disorders. This review highlights the role of ribosome display in drug discovery, discusses advantages and disadvantages of the system, and attempts to predict the future impact of ribosome display technology on the development of novel engineered biopharmaceutical products for biological therapies.
Collapse
Affiliation(s)
- Achim Rothe
- CSIRO Molecular and Health Technologies, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
21
|
Abstract
During the past decade several display methods and other library screening techniques have been developed for isolating monoclonal antibodies (mAbs) from large collections of recombinant antibody fragments. These technologies are now widely exploited to build human antibodies with high affinity and specificity. Clever antibody library designs and selection concepts are now able to identify mAb leads with virtually any specificity. Innovative strategies enable directed evolution of binding sites with ultra-high affinity, high stability and increased potency, sometimes to a level that cannot be achieved by immunization. Automation of the technology is making it possible to identify hundreds of different antibody leads to a single therapeutic target. With the first antibody of this new generation, adalimumab (Humira, a human IgG1 specific for human tumor necrosis factor (TNF)), already approved for therapy and with many more in clinical trials, these recombinant antibody technologies will provide a solid basis for the discovery of antibody-based biopharmaceuticals, diagnostics and research reagents for decades to come.
Collapse
|
22
|
Douthwaite JA, Groves MA, Dufner P, Jermutus L. An improved method for an efficient and easily accessible eukaryotic ribosome display technology. Protein Eng Des Sel 2005; 19:85-90. [PMID: 16368721 DOI: 10.1093/protein/gzj003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ribosome display is a powerful in vitro technology for the selection and directed evolution of proteins. However, this technology has so far been perceived as being technically challenging owing to comparatively difficult protocols and the absence of tailored commercial reagents, particularly when using prokaryotic cell-free expression systems. Eukaryotic ribosome display is potentially a more accessible alternative because of the availability of suitable commercial reagents, yet despite published protocols, this method has been less widely used. For eukaryotic ribosome display, a novel mechanism of mRNA recovery compared with that of the well-proven prokaryotic method has been proposed. We have examined the eukaryotic ribosome display process with the aims of investigating the proposed mechanism of sequence recovery and of identifying aspects of the protocol that may have lead to poor performance and therefore so far limited its use. We demonstrate that the proposed novel method is in fact mechanistically comparable to the prokaryotic method and we provide a step-by-step protocol for eukaryotic ribosome display that is 20-fold more efficient than current published methods. Our findings should increase the ease of operating ribosome display technology, making it more accessible to the scientific community.
Collapse
Affiliation(s)
- J A Douthwaite
- Cambridge Antibody Technology, Granta Park, Milstein Building, Cambridge CB1 6GH, UK.
| | | | | | | |
Collapse
|