1
|
Li Y, Feng D, Zhu X. Preliminary Study on the Application of Nanochitosan Film and Petrolatum Gauze in the Modified Devine Operation. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:9882966. [PMID: 35845736 PMCID: PMC9259251 DOI: 10.1155/2022/9882966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
Although the use of sterile petroleum jelly gauze combined with nanochitosan film to wrap wounds has been proven to have good results, it has not been applied for modified Devine surgery. The use of sterile petroleum jelly gauze alone in the modified Devine surgery to treat concealed penis in children has different effects. In this study, the systematic evaluation of the effect of the modified Devine technique (Vaseline gauze bandaging the wound) in the treatment of concealed penis in children is conducted. Furthermore, the application of nanochitosan film and Vaseline gauze in the modified Devine technique is proposed. By analytical search in PubMed, China Knowledge Network (CKN), and other Chinese and foreign literature databases, there are 13 studies describing the development of the penis during the follow-up period with high satisfaction of patients and their family members. In addition, systematic evaluations have shown that the complete removal of the fibrotic penile sarcoid tissue is an important reason for the remarkable curative effect of the modified Devine surgery in the treatment of concealed penis in children.
Collapse
Affiliation(s)
- Yuan Li
- Department of Pediatric Urology, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou 221006, China
| | - Dongchuan Feng
- Department of Pediatric Urology, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou 221006, China
| | - Xiaoyu Zhu
- Department of Pediatric Urology, Xuzhou Children's Hospital, Xuzhou Medical University, Xuzhou 221006, China
| |
Collapse
|
2
|
D'haeseleer P, Collette NM, Lao V, Segelke BW, Branda SS, Franco M. Shotgun Immunoproteomic Approach for the Discovery of Linear B-Cell Epitopes in Biothreat Agents Francisella tularensis and Burkholderia pseudomallei. Front Immunol 2021; 12:716676. [PMID: 34659206 PMCID: PMC8513525 DOI: 10.3389/fimmu.2021.716676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Peptide-based subunit vaccines are coming to the forefront of current vaccine approaches, with safety and cost-effective production among their top advantages. Peptide vaccine formulations consist of multiple synthetic linear epitopes that together trigger desired immune responses that can result in robust immune memory. The advantages of linear compared to conformational epitopes are their simple structure, ease of synthesis, and ability to stimulate immune responses by means that do not require complex 3D conformation. Prediction of linear epitopes through use of computational tools is fast and cost-effective, but typically of low accuracy, necessitating extensive experimentation to verify results. On the other hand, identification of linear epitopes through experimental screening has been an inefficient process that requires thorough characterization of previously identified full-length protein antigens, or laborious techniques involving genetic manipulation of organisms. In this study, we apply a newly developed generalizable screening method that enables efficient identification of B-cell epitopes in the proteomes of pathogenic bacteria. As a test case, we used this method to identify epitopes in the proteome of Francisella tularensis (Ft), a Select Agent with a well-characterized immunoproteome. Our screen identified many peptides that map to known antigens, including verified and predicted outer membrane proteins and extracellular proteins, validating the utility of this approach. We then used the method to identify seroreactive peptides in the less characterized immunoproteome of Select Agent Burkholderia pseudomallei (Bp). This screen revealed known Bp antigens as well as proteins that have not been previously identified as antigens. Although B-cell epitope prediction tools Bepipred 2.0 and iBCE-EL classified many of our seroreactive peptides as epitopes, they did not score them significantly higher than the non-reactive tryptic peptides in our study, nor did they assign higher scores to seroreactive peptides from known Ft or Bp antigens, highlighting the need for experimental data instead of relying on computational epitope predictions alone. The present workflow is easily adaptable to detecting peptide targets relevant to the immune systems of other mammalian species, including humans (depending upon the availability of convalescent sera from patients), and could aid in accelerating the discovery of B-cell epitopes and development of vaccines to counter emerging biological threats.
Collapse
Affiliation(s)
- Patrik D'haeseleer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Nicole M Collette
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Victoria Lao
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Brent W Segelke
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Steven S Branda
- Molecular and Microbiology Department, Sandia National Laboratories, Livermore, CA, United States
| | - Magdalena Franco
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
3
|
Bao Q, Li X, Han G, Zhu Y, Mao C, Yang M. Phage-based vaccines. Adv Drug Deliv Rev 2019; 145:40-56. [PMID: 30594492 DOI: 10.1016/j.addr.2018.12.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 10/01/2018] [Accepted: 12/17/2018] [Indexed: 02/08/2023]
Abstract
Bacteriophages, or more colloquially as phages, are viruses that possess the ability to infect and replicate with bacterial cells. They are assembled from two major types of biomolecules, the nucleic acids and the proteins, with the latter forming a capsid and the former being encapsulated. In the eukaryotic hosts, phages are inert particulate antigens and cannot trigger pathogenesis. In recent years, many studies have been explored about using phages as nanomedicine platforms for developing vaccines due to their unique biological characteristics. The whole phage particles can be used for vaccine design in the form of phage-displayed vaccines or phage DNA vaccines. Phage-displayed vaccines are the phages with peptide or protein antigens genetically displayed on their surfaces as well as those with antigens chemically conjugated or biologically bound on their surfaces. The phages can then deliver the immunogenic peptides or proteins to the target cells or tissues. Phage DNA vaccines are the eukaryotic promoter-driven vaccine genes inserted in the phage genomes, which are carried by phages to the target cells to generate antigens. The antigens, either as the immunogenic peptides or proteins displayed on the phages, or as the products expressed from the vaccine genes, can serve as vaccines to elicit immune responses for disease prevention and treatment. Both phage-displayed vaccines and phage DNA vaccines promise a brilliant future for developing vaccines. This review presents the recent advancements in the field of phage-based vaccines and their applications in both the prevention and treatment of various diseases. It also discusses the challenges and perspectives in moving this field forwards.
Collapse
|
4
|
Tao Y, Shu J, Chen J, Wu Y, He Y. A concise review of vaccines against Mycoplasma hyopneumoniae. Res Vet Sci 2019; 123:144-152. [DOI: 10.1016/j.rvsc.2019.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/17/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022]
|
5
|
|
6
|
Utilization of phage display to identify antigenic regions in the PCV2 capsid protein for the evaluation of serological responses in mice and pigs. Arch Virol 2018; 163:1877-1887. [PMID: 29589172 DOI: 10.1007/s00705-018-3816-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 02/07/2018] [Indexed: 10/17/2022]
Abstract
Porcine circovirus 2 (PCV2) is associated with a series of swine diseases. There is a great interest in improving our understanding of the immunology of PCV2, especially the properties of the viral capsid protein Cap-PCV2 and how they relate to the immunogenicity of the virus and the subsequent development of vaccines. Phage display screening has been widely used to study binding affinities for target proteins. The aim of this study was to use phage display screening to identify antigenic peptides in the PCV2 capsid protein. After the selection of peptides, five of them presented similarity to sequences found in cap-PCV2, and four peptides were synthesized and used for immunization in mice: 51-CTFGYTIKRTVT-62 (PS14), 127-CDNFVTKATALTY-138 (PS34), 164-CKPVLDSTIDY-173 (PC12), and 79-CFLPPGGGSNT-88 (PF1). Inoculation with the PC12 peptide led to the highest production of antibodies. Furthermore, we used the PC12 peptide as an antigen to examine the humoral response of swine serum by ELISA. The sensitivity and specificity of this assay was 88.9% and 92.85%, respectively. Altogether, characterization of immunogenic epitopes in the capsid protein of PCV2 may contribute to the improvement of vaccines and diagnostics.
Collapse
|
7
|
Aghebati-Maleki L, Bakhshinejad B, Baradaran B, Motallebnezhad M, Aghebati-Maleki A, Nickho H, Yousefi M, Majidi J. Phage display as a promising approach for vaccine development. J Biomed Sci 2016; 23:66. [PMID: 27680328 PMCID: PMC5041315 DOI: 10.1186/s12929-016-0285-9] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022] Open
Abstract
Bacteriophages are specific antagonists to bacterial hosts. These viral entities have attracted growing interest as optimal vaccine delivery vehicles. Phages are well-matched for vaccine design due to being highly stable under harsh environmental conditions, simple and inexpensive large scale production, and potent adjuvant capacities. Phage vaccines have efficient immunostimulatory effects and present a high safety profile because these viruses have made a constant relationship with the mammalian body during a long-standing evolutionary period. The birth of phage display technology has been a turning point in the development of phage-based vaccines. Phage display vaccines are made by expressing multiple copies of an antigen on the surface of immunogenic phage particles, thereby eliciting a powerful and effective immune response. Also, the ability to produce combinatorial peptide libraries with a highly diverse pool of randomized ligands has transformed phage display into a straightforward, versatile and high throughput screening methodology for the identification of potential vaccine candidates against different diseases in particular microbial infections. These libraries can be conveniently screened through an affinity selection-based strategy called biopanning against a wide variety of targets for the selection of mimotopes with high antigenicity and immunogenicity. Also, they can be panned against the antiserum of convalescent individuals to recognize novel peptidomimetics of pathogen-related epitopes. Phage display has represented enormous promise for finding new strategies of vaccine discovery and production and current breakthroughs promise a brilliant future for the development of different phage-based vaccine platforms.
Collapse
Affiliation(s)
- Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Bakhshinejad
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ali Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical sciences, Tabriz, Iran
| | - Hamid Nickho
- Immunology Research Center, Tabriz University of Medical sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Jafar Majidi
- Immunology Research Center, Tabriz University of Medical sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Wang L, Deng X, Liu H, Zhao L, You X, Dai P, Wan K, Zeng Y. The mimic epitopes ofMycobacterium tuberculosisscreened by phage display peptide library have serodiagnostic potential for tuberculosis. Pathog Dis 2016; 74:ftw091. [DOI: 10.1093/femspd/ftw091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2016] [Indexed: 11/12/2022] Open
|
9
|
Discovering Peptide Inhibitors of Human Squalene Synthase Through Screening the Phage-Displayed Cyclic Peptide c7c Library. Appl Biochem Biotechnol 2016; 179:597-609. [DOI: 10.1007/s12010-016-2016-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
|
10
|
Ahmad TA, Eweida AE, Sheweita SA. B-cell epitope mapping for the design of vaccines and effective diagnostics. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.trivac.2016.04.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Shiuan D, Lin HK, Chen YH, Chang DK, Huang KJ, Farh L. Exploration of Peptide Inhibitors of Human Squalene Synthase through Molecular Modeling and Phage Display Technique. Appl Biochem Biotechnol 2015; 178:312-23. [PMID: 26438313 DOI: 10.1007/s12010-015-1873-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/24/2015] [Indexed: 11/29/2022]
Abstract
Many studies have demonstrated the role of elevated levels of serum cholesterol in the pathogenesis of atherosclerosis and coronary heart disease. Various drugs targeting the key enzymes involved in the cholesterol biosynthesis pathway have been investigated for the treatment of hypercholesterolemia. Human squalene synthase has been one of the most important targets for therapeutic intervention. In the present study, we used the recombinant human squalene synthase as the lure for screening the peptide inhibitors from phage-displayed random peptide library. The tightly bound phages and their derived peptides were further evaluated based on their potential binding capabilities, molecular modeling characteristics and predicted absorption, distribution, metabolism, excretion, toxicity (ADMET) properties. Several hexa-peptides and tetra-peptides were finally synthesized to assay their inhibitory effects toward the recombinant human squalene synthase. The results demonstrated that the hexa-peptide FTACNW and tetra-peptide VACL can inhibit human squalene synthase effectively (with IC50 values near 100 μM) and may have potential to develop further as future hypocholesterolemia agents.
Collapse
Affiliation(s)
- David Shiuan
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan, 974, Republic of China.
| | - Hwan-Kang Lin
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan, 974, Republic of China
| | - Yue-Hao Chen
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan, 974, Republic of China
| | - Ding-Kwo Chang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, 115, Republic of China
| | - Kao-Jean Huang
- Development Center for Biotechnology, Taipei, Taiwan, 221, Republic of China
| | - Lynn Farh
- Department of Applied Chemistry, National Pingtung University, Pingtung, Taiwan, 900, Republic of China
| |
Collapse
|
12
|
Henry KA, Arbabi-Ghahroudi M, Scott JK. Beyond phage display: non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold. Front Microbiol 2015; 6:755. [PMID: 26300850 PMCID: PMC4523942 DOI: 10.3389/fmicb.2015.00755] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 07/10/2015] [Indexed: 12/23/2022] Open
Abstract
For the past 25 years, phage display technology has been an invaluable tool for studies of protein-protein interactions. However, the inherent biological, biochemical, and biophysical properties of filamentous bacteriophage, as well as the ease of its genetic manipulation, also make it an attractive platform outside the traditional phage display canon. This review will focus on the unique properties of the filamentous bacteriophage and highlight its diverse applications in current research. Particular emphases are placed on: (i) the advantages of the phage as a vaccine carrier, including its high immunogenicity, relative antigenic simplicity and ability to activate a range of immune responses, (ii) the phage's potential as a prophylactic and therapeutic agent for infectious and chronic diseases, (iii) the regularity of the virion major coat protein lattice, which enables a variety of bioconjugation and surface chemistry applications, particularly in nanomaterials, and (iv) the phage's large population sizes and fast generation times, which make it an excellent model system for directed protein evolution. Despite their ubiquity in the biosphere, metagenomics work is just beginning to explore the ecology of filamentous and non-filamentous phage, and their role in the evolution of bacterial populations. Thus, the filamentous phage represents a robust, inexpensive, and versatile microorganism whose bioengineering applications continue to expand in new directions, although its limitations in some spheres impose obstacles to its widespread adoption and use.
Collapse
Affiliation(s)
- Kevin A. Henry
- Human Health Therapeutics Portfolio, National Research Council Canada, OttawaON, Canada
| | - Mehdi Arbabi-Ghahroudi
- Human Health Therapeutics Portfolio, National Research Council Canada, OttawaON, Canada
- School of Environmental Sciences, University of Guelph, GuelphON, Canada
- Department of Biology, Carleton University, OttawaON, Canada
| | - Jamie K. Scott
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCCanada
- Faculty of Health Sciences, Simon Fraser University, BurnabyBC, Canada
| |
Collapse
|
13
|
Peptide inhibitors of human HMG-CoA reductase as potential hypocholesterolemia agents. Biochem Biophys Res Commun 2014; 456:104-9. [PMID: 25446106 DOI: 10.1016/j.bbrc.2014.11.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/14/2014] [Indexed: 11/22/2022]
Abstract
Hypercholesterolemia may lead to obesity and cardiovascular diseases. To prevent hypercholesterolemia, many drugs have been developed while searching for better drugs to treat hypercholesterolemia has never been ended. Other than small molecule drugs, peptide drugs are gaining more visibilities in many therapeutic areas. In the present study, we employed phage-display techniques to screen peptide inhibitors against human HMG-CoA reductase. The results indicate that the tetrapeptide PMAS inhibits hHMGR effectively (IC50=68 μM), could be a lead compound to develop hypocholesterolemic agents.
Collapse
|
14
|
Yang L, Cen J, Xue Q, Li J, Bi Y, Sun L, Liu W. Identification of rabies virus mimotopes screened from a phage display peptide library with purified dog anti-rabies virus serum IgG. Virus Res 2013; 174:47-51. [PMID: 23499997 DOI: 10.1016/j.virusres.2013.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 02/19/2013] [Accepted: 02/22/2013] [Indexed: 11/18/2022]
Abstract
The rabies virus glycoprotein (G) is a key protein for both virus infectivity and eliciting protective immunity as an antigen. What is more, the nucleoprotein (N) is also a significant rabies virus antigen. In this study, purified anti-rabies virus IgG from dogs immunized with the standard CVS-11 strain was used to screen the Ph.D.-12™ Phage Display Peptide Library for peptides that correspond to or mimic native G and N epitopes. In contrast to previous reports that use monoclonal antibodies or human anti-rabies virus serum, this study describes the first use of dog serum to screen for epitopes. After three rounds of biopanning, selected phage clones were identified by plaque screening, western blotting (WB), and ELISA. Positive phage clones were sequenced, and their amino acid sequences were deduced. Alignment of the peptide sequences to G and N indicated that the epitope peptides matched well with G amino acids at positions 34-42, 198-200, 226-264, 296-371, and 330-343, as well as to N amino acids at positions 22-168 (N-terminal) and 262-450 (C-terminal), confirming that the sequences were indeed mimicking epitopes. Thirty percent of the selected clones matched reported antigenic regions located at sites II and III of the glycoprotein. Two sequences, LEPKGRYDDPWT and ATRYDDIWASTA, that have no homology to the known antigenic sites of either the G or N exhibited a common RYDD-W-T motif that is highly homologous to the amino acid residues at positions 126-141 of the G. This finding indicates that this motif may be a new potential RABV G B cell epitope. Amino acids 126-141 containing the RYDD-W-T motif may become a novel key epitope region and allow the development of a rabies vaccine or diagnostic reagents for the treatment of rabies.
Collapse
Affiliation(s)
- Limin Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Van Nieuwenhove L, Büscher P, Balharbi F, Humbert M, Guisez Y, Lejon V. A LiTat 1.5 variant surface glycoprotein-derived peptide with diagnostic potential for Trypanosoma brucei gambiense. Trop Med Int Health 2013; 18:461-5. [PMID: 23289521 DOI: 10.1111/tmi.12058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To evaluate the accuracy of a peptide, corresponding to the variant surface glycoprotein (VSG) LiTat 1.5 amino acid (AA) sequence 268-281 and identified through alignment of monoclonal antibody selected mimotopes, for diagnosis of Trypanosoma brucei gambiense sleeping sickness. METHODS A synthetic biotinylated peptide (peptide 1.5/268-281), native VSG LiTat 1.3 and VSG LiTat 1.5 were tested in an indirect ELISA with 102 sera from patients with HAT and 102 endemic HAT-negative controls. RESULTS The area under the curve (AUC) of peptide 1.5/268-281 was 0.954 (95% confidence interval 0.918-0.980), indicating diagnostic potential. The areas under the curve of VSG LiTat 1.3 and LiTat 1.5 were 1.000 (0.982-1.000) and 0.997 (0.973-1.000), respectively, and significantly higher than the AUC of peptide 1.5/268-281. On a model of VSG LiTat 1.5, peptide 1.5/268-281 was mapped near the top of the VSG. CONCLUSIONS A biotinylated peptide corresponding to AA 268-281 of VSG LiTat 1.5 may replace the native VSG in serodiagnostic tests, but the diagnostic accuracy is lower than for the full-length native VSG LiTat 1.3 and VSG LiTat 1.5.
Collapse
|
16
|
Van Nieuwenhove L, Büscher P, Balharbi F, Humbert M, Dieltjens T, Guisez Y, Lejon V. Identification of mimotopes with diagnostic potential for Trypanosoma brucei gambiense variant surface glycoproteins using human antibody fractions. PLoS Negl Trop Dis 2012; 6:e1682. [PMID: 22720103 PMCID: PMC3373652 DOI: 10.1371/journal.pntd.0001682] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 04/27/2012] [Indexed: 11/18/2022] Open
Abstract
Background At present, screening of the population at risk for gambiense human African trypanosomiasis (HAT) is based on detection of antibodies against native variant surface glycoproteins (VSGs) of Trypanosoma brucei (T.b.) gambiense. Drawbacks of these native VSGs include culture of infective T.b. gambiense trypanosomes in laboratory rodents, necessary for production, and the exposure of non-specific epitopes that may cause cross-reactions. We therefore aimed at identifying peptides that mimic epitopes, hence called “mimotopes,” specific to T.b. gambiense VSGs and that may replace the native proteins in antibody detection tests. Methodology/Principal Findings A Ph.D.-12 peptide phage display library was screened with polyclonal antibodies from patient sera, previously affinity purified on VSG LiTat 1.3 or LiTat 1.5. The peptide sequences were derived from the DNA sequence of the selected phages and synthesised as biotinylated peptides. Respectively, eighteen and twenty different mimotopes were identified for VSG LiTat 1.3 and LiTat 1.5, of which six and five were retained for assessment of their diagnostic performance. Based on alignment of the peptide sequences on the original protein sequence of VSG LiTat 1.3 and 1.5, three additional peptides were synthesised. We evaluated the diagnostic performance of the synthetic peptides in indirect ELISA with 102 sera from HAT patients and 102 endemic negative controls. All mimotopes had areas under the curve (AUCs) of ≥0.85, indicating their diagnostic potential. One peptide corresponding to the VSG LiTat 1.3 protein sequence also had an AUC of ≥0.85, while the peptide based on the sequence of VSG LiTat 1.5 had an AUC of only 0.79. Conclusions/Significance We delivered the proof of principle that mimotopes for T.b. gambiense VSGs, with diagnostic potential, can be selected by phage display using polyclonal human antibodies. Control of the chronic form of sleeping sickness or gambiense human African trypanosomiasis (HAT) consists of accurate diagnosis followed by treatment. We aim to replace the native variant surface glycoprotein (VSG) parasite antigens that are presently used in most antibody detection tests with peptides that can be synthesised in vitro. Antibodies recognising VSG were purified from HAT patient sera and were used to select phage-expressed peptides that mimic VSG epitopes from a Ph.D.-12 phage display library. The diagnostic potential of the corresponding synthetic peptides was demonstrated in indirect ELISA with sera from HAT patients and endemic negative controls. We proved that diagnostic mimotopes for T.b. gambiense VSGs can be selected by phage display technology, using polyclonal human antibodies.
Collapse
Affiliation(s)
| | - Philippe Büscher
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- * E-mail:
| | - Fatima Balharbi
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Michael Humbert
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tessa Dieltjens
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Yves Guisez
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Veerle Lejon
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
17
|
A dodecapeptide (YQVTQSKVMSHR) exhibits antibacterial effect and induces cell aggregation in Escherichia coli. Appl Microbiol Biotechnol 2012; 94:755-62. [PMID: 22314514 DOI: 10.1007/s00253-011-3857-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/15/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
Abstract
Antimicrobial peptides play an important role in the innate immune response and host defense mechanism. In the present study, we employed phage display technique to screen for inhibitors which may block the phosphoenolpyruvatedependent phosphotransferase system (PTS) pathway and hence retard cell growth. The recombinant histidine-containing phosphocarrier HPr protein was prepared as the target to screen for the tight binders from the phage-displayed random peptide library Ph.D.-12. The biopanning processes were performed and the binding capabilities of the selected phage were further estimated by enzyme-linked immunosorbent assay (ELISA). The single-stranded DNAs of the 20 selected phages were isolated, sequenced, and five corresponding peptides were synthesized. Only one of the five peptides, AP1 (YQVTQSK VMSHR) was found to inhibit the growth of Escherichia coli cells efficiently (IC₅₀~50 μM). Molecular modeling reveals that AP1 may block the EI-HPr interaction and phosphotransfer. Interestingly, AP1 was also found to induce cell aggregation in a concentration-dependent manner. Since glycogen accumulation has been attributed to biofilm formation, the effects of AP1 on the intracellular glycogen levels were measured. The results strongly indicate that the cell aggregation may be caused by the binding of peptide AP1 with HPr to block the interaction of dephosphorylated HPr with glycogen phosphorylase (GP). Because glycogen phosphorylase activity can be activated by HPr-GP interaction, the binding of AP1 to HPr would cause a decreasing rate of glycogen breakdown in M9 medium and accumulation of glycogen, which may lead to eventual cell aggregation. To the best of our knowledge, this is the first study to demonstrate that an inhibitor bound to a dephosphorylated HPr can decouple its regulatory function and induce cell aggregation.
Collapse
|
18
|
Halperin RF, Stafford P, Emery JS, Navalkar KA, Johnston SA. GuiTope: an application for mapping random-sequence peptides to protein sequences. BMC Bioinformatics 2012; 13:1. [PMID: 22214541 PMCID: PMC3280184 DOI: 10.1186/1471-2105-13-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 01/03/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Random-sequence peptide libraries are a commonly used tool to identify novel ligands for binding antibodies, other proteins, and small molecules. It is often of interest to compare the selected peptide sequences to the natural protein binding partners to infer the exact binding site or the importance of particular residues. The ability to search a set of sequences for similarity to a set of peptides may sometimes enable the prediction of an antibody epitope or a novel binding partner. We have developed a software application designed specifically for this task. RESULTS GuiTope provides a graphical user interface for aligning peptide sequences to protein sequences. All alignment parameters are accessible to the user including the ability to specify the amino acid frequency in the peptide library; these frequencies often differ significantly from those assumed by popular alignment programs. It also includes a novel feature to align di-peptide inversions, which we have found improves the accuracy of antibody epitope prediction from peptide microarray data and shows utility in analyzing phage display datasets. Finally, GuiTope can randomly select peptides from a given library to estimate a null distribution of scores and calculate statistical significance. CONCLUSIONS GuiTope provides a convenient method for comparing selected peptide sequences to protein sequences, including flexible alignment parameters, novel alignment features, ability to search a database, and statistical significance of results. The software is available as an executable (for PC) at http://www.immunosignature.com/software and ongoing updates and source code will be available at sourceforge.net.
Collapse
Affiliation(s)
- Rebecca F Halperin
- Center for Innovations in Medicine, The Biodesign Institute at Arizona State University, PO Box 875901, Tempe, AZ 85281, USA
| | | | | | | | | |
Collapse
|
19
|
Prudencio CR, Rodrigues AAR, Cardoso R, Szabó MPJ, Goulart LR. Antigen fingerprinting of polyclonal antibodies raised in immunized chickens with tick total proteins: a reservoir for the discovery of novel antigens. ACTA ACUST UNITED AC 2011; 16:1027-36. [PMID: 21844329 DOI: 10.1177/1087057111414901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Identification of tick-protective antigens remains the limiting step in vaccine development. The authors have generated several B cell epitope candidates by fingerprinting Rhipicephalus (Boophilus) microplus proteins that were characterized through bioselection of random peptide phage display libraries against polyclonal antibodies antitick proteins. From 280 clones selected and sequenced, 107 distinct reactive clones were validated by dot-blot assays. Eight consensus motifs were generated, and the most frequent ones were PXXKXH, NXXKXXL, and HTS (68.2%, 65%, and 42%, respectively). The consensus sequences identified potential vaccine targets by alignment with the protein database of R. microplus, which may have putative roles in the host response. Sequences that did not align with known proteins but shared extensive homology among each other were classified as conformational epitopes. Sequence alignments also recognized multiple targets, and the most predominant proteins were identified. Finally, immunized mice sera recognized tick proteins, demonstrating that functional epitope profiles can be identified through selection of phage-displayed peptide libraries with hyperimmune sera and revealing that the epitope-displaying phages can be used as potential vaccine immunogens.
Collapse
Affiliation(s)
- Carlos Roberto Prudencio
- Laboratório de Nanobiotecnologia, Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| | | | | | | | | |
Collapse
|
20
|
Marchioro SB, Simionatto S, Galli V, Conceição FR, Brum CB, Fisch A, Gomes CK, Dellagostin OA. Production and characterization of recombinant transmembrane proteins from Mycoplasma hyopneumoniae. Vet Microbiol 2011; 155:44-52. [PMID: 21890287 DOI: 10.1016/j.vetmic.2011.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 07/27/2011] [Accepted: 08/01/2011] [Indexed: 10/17/2022]
Abstract
Mycoplasma hyopneumoniae is the etiological agent of swine enzootic pneumonia (EP), a chronic respiratory disease which causes significant economic losses to the swine industry worldwide. More efficient strategies for controlling this disease are necessary. In this study, we cloned17 genes coding for transmembrane proteins from M. hyopneumoniae, among which six were successfully expressed in Escherichia coli and had their immunogenic and antigenic properties evaluated. All proteins were immunogenic in mice and sera from naturally infected pigs reacted with the recombinant proteins, suggesting that they are expressed during infection. These antigens may contribute for the development of new recombinant vaccines and diagnostic tests against EP.
Collapse
Affiliation(s)
- S B Marchioro
- Laboratório de Biologia Molecular, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Selection of high affinity peptide ligands for detection of circulating antibodies in neurocysticercosis. Immunol Lett 2010; 129:94-9. [PMID: 20138084 DOI: 10.1016/j.imlet.2010.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/25/2010] [Accepted: 01/27/2010] [Indexed: 11/23/2022]
Abstract
Neurocysticercosis (NC), caused by Taenia solium, is the most common infection caused by helminthes of the human central nervous system. In this study, a random peptide phage display library was used to isolate peptide ligands as potential markers for neurocysticercosis diagnosis, because occurrence of cross-reactions with other helminthes species in the current used markers. We selected different peptides using IgG purified from pooled sera of neurocysticercosis patients. To investigate the diagnostic potential of recombinant peptides, we have tested different panels of serum samples by Phage-ELISA, and 10 phage clones strongly bound to the anti-T. solium IgGs in NC sera, with an accuracy range from 84.2% to 95%. The phage clones, NC(4)1 and NC(2)8, presented the highest sensitivity and specificity (100%), respectively, and most important, some phage clones did not react with patients' sera from Echinococcus granulosus infected patients. The validation with a competitive ELISA assay demonstrated that the selected phages could mimic T. solium epitopes and bind specifically to the pool of NC sera. Finally, the two recombinant antigens may become potential biomarkers for serodiagnosis of NC, and the Phage-ELISA demonstrated to be a very good assay, being reproducible, simple, fast, and low-cost due to its production through Escherichia coli culture, allowing a high throughput screening of NC.
Collapse
|
22
|
Ulises HC, Tatiana G, Karlen G, Guillermo MH, Juan XC, Carlos E. Peptide sequences identified by phage display are immunodominant functional motifs of Pet and Pic serine proteases secreted by Escherichia coli and Shigella flexneri. Peptides 2009; 30:2127-35. [PMID: 19772881 DOI: 10.1016/j.peptides.2009.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 09/14/2009] [Accepted: 09/15/2009] [Indexed: 11/23/2022]
Abstract
Plasmid-encoded toxin (Pet) and protein involved in colonization (Pic), are serine protease autotransporters of Enterobacteriaceae (SPATEs) secreted by enteroaggregative Escherichia coli (EAEC), which display the GDSGSG sequence or the serine motif. Our research was directed to localize functional sites in both proteins using the phage display method. From a 12mer linear and a 7mer cysteine-constrained (C7C) libraries displayed on the M13 phage pIII protein we selected different mimotopes using IgG purified from sera of children naturally infected with EAEC producing Pet and Pic proteins, and anti-Pet and anti-Pic IgG purified from rabbits immunized with each one of these proteins. Children IgG selected a homologous group of sequences forming the consensus sequence, motif, PQPxK, and the motifs PGxI/LN and CxPDDSSxC were selected by the rabbit anti-Pet and anti-Pic IgGs, respectively. Analysis of the amino terminal region of a panel of SPATEs showed the presence in all of them of sequences matching the PGxI/LN or CxPDDSSxC motifs, and in a three-dimensional model (Modeller 9v2) designed for Pet, both these motifs were found in the globular portion of the protein, close to the protease active site GDSGSG. Antibodies induced in mice by mimotopes carrying the three aforementioned motifs were reactive with Pet, Pic, and with synthetic peptides carrying the immunogenic mimotope sequences TYPGYINHSKA and LLPQPPKLLLP, thus confirming that the peptide moiety of the selected phages induced the antibodies specific for the toxins. The antibodies induced in mice to the PGxI/LN and CxPDDSSxC mimotopes inhibited fodrin proteolysis and macrophage chemotaxis biological activities of Pet. Our results showed that we were able to generate, by a phage display procedure, mimotopes with sequence motifs PGxI/LN and CxPDDSSxC, and to identify them as functional motifs of the Pet, Pic and other SPATEs involved in their biological activities.
Collapse
Affiliation(s)
- Hernández-Chiñas Ulises
- Unidad de Posgrado, Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México DF, Mexico
| | | | | | | | | | | |
Collapse
|
23
|
Antibody reactivity of conformational peptide mimics of a conserved H5N1 neutralization site in different fusion proteins. Arch Virol 2009; 155:19-26. [PMID: 19911251 DOI: 10.1007/s00705-009-0542-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 10/07/2009] [Indexed: 10/20/2022]
Abstract
Several peptide mimics of a conserved H5N1 avian influenza virus neutralization site recognized by 8H5 mAb have been reported previously. In this study, the secondary and possibly higher structural orders of the peptide mimics 122 and 125 were investigated and found to be closely related to the specific binding with 8H5 mAb. These two peptide mimics were fused to three different carrier proteins, and the antibody binding activities were recovered in 4 of the 11 fusion proteins. HEV structural protein p239 and HBc were more suitable than the outer membrane protein T47 of the Treponema pallidum particle for the recovery of reactivity. The increase in the copy number of peptide mimics was important for the recovery of antibody-binding activity and the interaction between peptide and carrier protein may affect the spatial structure of both the peptide and the carrier protein. These results are likely to be of relevance for conformational peptide mimics in diagnostic tests, vaccine and inhibitors.
Collapse
|
24
|
Li YZ, Ho YP, Chen ST, Shiuan D. Proteomic Analysis of the Interactions between Mycoplasma hyopneumoniae and Porcine Tracheal Ciliated Cells. Appl Biochem Biotechnol 2009; 160:2248-55. [DOI: 10.1007/s12010-009-8713-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 07/07/2009] [Indexed: 11/30/2022]
|
25
|
Wang PC, Loh KS, Lin ST, Chien TL, Chiang JR, Hsieh WC, Miao BL, Su CF, Yang WJ. Consensus sequence L/PKSSLL mimics crucial epitope on Loop III of Taiwan cobra cardiotoxin. Biochem Biophys Res Commun 2009; 387:617-22. [PMID: 19632196 DOI: 10.1016/j.bbrc.2009.07.097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 07/20/2009] [Indexed: 12/01/2022]
Abstract
Phage display is effective in screening peptides that mimic venom's neutralizing epitopes. A phage display cyclized heptapeptide library (C7C library) was panned with purified divalent antivenin IgG, which neutralizes Naja naja atra venom (NAV) and Bungarus multicinctus venom (BMV). The selected heptapeptide sequences were aligned with known protein sequences of NAV and BMV in GenBank. One of the four consensus sequences, L/PKSSLL, mimicked the crucial epitope on Loop III of Taiwan cobra cardiotoxin that is associated with the venom's lethal potency. In dot blot analysis, several clones showed varying reactivities for NAV monovalent antivenin and lesser cross-reactions with BMV monovalent antivenin. The KSSLLRN-carrying phage occurred four times in selected clones and showed the strongest reactivity to NAV monovalent antivenin. Furthermore, the QDSLLPS-carrying phage also presented significant dot blot signal, indicating that the SLL sequence shared by these two clones may be a crucial antibody-binding site.
Collapse
Affiliation(s)
- Ping-Chieh Wang
- Institute of Biotechnology, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Immunogenicity and protective efficacy of ApxIA and ApxIIA DNA vaccine against Actinobacillus pleuropneumoniae lethal challenge in murine model. Vaccine 2009; 27:4565-70. [DOI: 10.1016/j.vaccine.2009.05.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 05/13/2009] [Accepted: 05/21/2009] [Indexed: 02/02/2023]
|
27
|
Na-ngam N, Kalambaheti T, Ekpo P, Pitaksajjakul P, Jamornthanyawat N, Chantratita N, Sirisinha S, Yamabhai M, Thamlikitkul V, Ramasoota P. Mimotope identification from monoclonal antibodies of Burkholderia pseudomallei using random peptide phage libraries. Trans R Soc Trop Med Hyg 2008; 102 Suppl 1:S47-54. [DOI: 10.1016/s0035-9203(08)70014-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
28
|
Gu Y, Li J, Zhu X, Yang J, Li Q, Liu Z, Yu S, Li Y. Trichinella spiralis: Characterization of phage-displayed specific epitopes and their protective immunity in BALB/c mice. Exp Parasitol 2008; 118:66-74. [PMID: 17707815 DOI: 10.1016/j.exppara.2007.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 06/06/2007] [Accepted: 06/25/2007] [Indexed: 11/28/2022]
Abstract
Trichinellosis is a global zoonosis mainly caused by Trichinella spiralis. We have previously reported that a novel Ts87 gene from the cDNA library of adult T. spiralis was cloned and expressed in a prokaryotic expression system. Vaccination with recombinant Ts87 protein (rTs87) induced a muscle larvae burden reduction in BALB/c mice by 29% in response to T. spiralis infection. In the present study, we screened a random phage-displayed peptide library using monoclonal antibody 5A3 which recognized Ts87 protein. Four positive phage clones were selected to subcutaneously immunize BALB/c mice without adjuvant. Two phage clones could effectively stimulate specific antibodies against rTs87. Mice vaccinated with these two combined phage clones showed a 28.7% worm burden reduction as compared to the control group. Therefore, the identified phage clones displayed peptides representing specific epitopes of Ts87 protein and could be considered as potential vaccine candidates for T. spiralis.
Collapse
Affiliation(s)
- Yuan Gu
- Department of Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Mohammadi M, Rasaee MJ, Rajabibazl M, Paknejad M, Zare M, Mohammadzadeh S. Epitope Mapping of PR81 anti-MUC1 Monoclonal Antibody Following PEPSCAN and Phage Display Techniques. Hybridoma (Larchmt) 2007; 26:223-30. [PMID: 17725384 DOI: 10.1089/hyb.2007.0502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PR81 is an anti-MUC1 monoclonal antibody (MAb) which was generated against human MUC1 mucin that reacted with breast cancerous tissue, MUC1 positive cell line (MCF-7, BT-20, and T-4 7 D), and synthetic peptide, including the tandem repeat sequence of MUC1. Here we characterized the binding properties of PR81 against the tandem repeat of MUC1 by two different epitope mapping techniques, namely, PEPSCAN and phage display. Epitope mapping of PR81 MAb by PEPSCAN revealed a minimal consensus binding sequence, PDTRP, which is found on MUC1 peptide as the most important epitope. Using the phage display peptide library, we identified the motif PD(T/S/G)RP as an epitope and the motif AVGLSPDGSRGV as a mimotope recognized by PR81. Results of these two methods showed that the two residues, arginine and aspartic acid, have important roles in antibody binding and threonine can be substituted by either glycine or serine. These results may be of importance in tailor making antigens used in immunoassay.
Collapse
|
30
|
Okamba FR, Moreau E, Cheikh Saad Bouh K, Gagnon CA, Massie B, Arella M. Immune responses induced by replication-defective adenovirus expressing the C-terminal portion of the Mycoplasma hyopneumoniae P97 adhesin. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:767-74. [PMID: 17409219 PMCID: PMC1951074 DOI: 10.1128/cvi.00415-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mycoplasma hyopneumoniae, the causative agent of porcine enzootic pneumonia, colonizes the respiratory cilia of affected swine, causing significant economic losses to swine production worldwide. Vaccination is the most cost-effective strategy for the control and prevention of this disease. The goal of this study was to design and evaluate a replication-defective recombinant adenovirus, rAdP97c, expressing the C-terminal portion of P97 adhesin (P97c), an important pathogenesis-associated protein of M. hyopneumoniae, as a new vaccine candidate against M. hyopneumoniae infection. P97c-specific immune responses were evaluated in BALB/c mice following intranasal and intramuscular inoculation with rAdP97c. Mice inoculated by both routes of immunization produced significant levels of specific immunoglobulin G (IgG) antibodies in the serum and in bronchoalveolar lavage fluids (BALs). Animals immunized intranasally also produced a significant level of P97c-specific IgA in BALs. Intramuscular inoculation of rAdP97c induced a systemic and mucosal Th1-type biased response, evidenced by the predominance of IgG2a in the serum and BALs, whereas intranasal inoculation resulted in a mixed Th1/Th2-type response (balanced levels of IgG1 and IgG2a) in both sytemic and mucosal compartments. P97c-specific antibodies were able to inhibit the growth of M. hyopneumoniae cells in vitro. These data suggest that rAdP97c vaccine may represent a new strategy for controlling infection by M. hyopneumoniae.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adhesins, Bacterial/chemistry
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/immunology
- Administration, Intranasal
- Animals
- Antibodies, Bacterial/blood
- Antibody Formation/immunology
- Base Sequence
- Bronchoalveolar Lavage Fluid/immunology
- Disease Models, Animal
- Enzyme-Linked Immunosorbent Assay
- Escherichia coli/genetics
- Female
- Immunity, Mucosal
- Immunoglobulin A/blood
- Immunoglobulin A/immunology
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Injections, Intramuscular
- Mice
- Mice, Inbred BALB C
- Microbial Sensitivity Tests
- Mycoplasma hyopneumoniae/immunology
- Recombinant Proteins/chemistry
- Recombinant Proteins/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- F R Okamba
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada H7V 1B
| | | | | | | | | | | |
Collapse
|
31
|
Pinto PM, Chemale G, de Castro LA, Costa APM, Kich JD, Vainstein MH, Zaha A, Ferreira HB. Proteomic survey of the pathogenic Mycoplasma hyopneumoniae strain 7448 and identification of novel post-translationally modified and antigenic proteins. Vet Microbiol 2007; 121:83-93. [PMID: 17182197 DOI: 10.1016/j.vetmic.2006.11.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 11/13/2006] [Accepted: 11/20/2006] [Indexed: 12/11/2022]
Abstract
Mycoplasma hyopneumoniae is an important pathogen for pigs, being the causative agent of enzootic pneumonia. Recently, the genome sequences of three strains, J, 7448 and 232 have been reported. Here, we describe the results of a proteomic analysis, based on two-dimensional gel electrophoresis of soluble protein extracts, immunoblot and mass spectrometry, which was carried out aiming the identification of gene products and antigenic proteins from the M. hyopneumoniae pathogenic strain 7448. A preliminary M. hyopneumoniae proteome map in two pH ranges (3-10 and 4-7) was produced. A total of 31 different coding DNA sequences (CDSs), including three hypothetical ones, were experimentally verified with the identification of the corresponding protein products by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. According to the Clusters of Orthologous Groups (COG) functional classification, the identified proteins were assigned to the groups of metabolism (13), cellular processes (5) and information and storage processing (4). Nine of the identified proteins were not classifiable by COG, including some related to cytoadherence and possibly involved in pathogenicity. Moreover, at least five highly antigenic proteins of M. hyopneumoniae were identified by immunoblots, including four novel ones (a heat shock protein 70, an elongation factor Tu, a pyruvate dehydrogenase E1-beta subunit and the P76 membrane protein). The now available proteome map is expected to serve as a reference for comparative analyses between M. hyopneumoniae pathogenic and non-pathogenic strains, and for methabolic studies based on cells cultured under modified conditions.
Collapse
Affiliation(s)
- Paulo Marcos Pinto
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang H, Gao Y, Gong Y, Chen X, Liu C, Zhou X, Blackall PJ, Zhang P, Yang H. Identification and immunogenicity of an immunodominant mimotope of Avibacterium paragallinarum from a phage display peptide library. Vet Microbiol 2007; 119:231-9. [PMID: 17049758 DOI: 10.1016/j.vetmic.2006.08.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 08/26/2006] [Accepted: 08/31/2006] [Indexed: 10/24/2022]
Abstract
Avibacterium paragallinarum is the causative agent of infectious coryza. The protective antigens of this important pathogen have not yet been clearly identified. In this paper, we applied phage display technique to screen the immunodominant mimotopes of a serovar A strain of A. paragallinarum by using a random 12-peptide library, and evaluated the immunogenicity in chickens of the selected mimotope. Polyclonal antibody directed against A. paragallinarum strain 0083 (serovar A) was used as the target antibody and phage clones binding to this target were screened from the 12-mer random peptide library. More than 50% of the phage clones selected in the third round carried the consensus peptide motif sequence A-DP(M)L. The phage clones containing the peptide motif reacted with the target antibody and this interaction could be blocked, in a dose-dependent manner, by A. paragallinarum. One of the peptide sequences, YGLLAVDPLFKP, was selected and the corresponding oligonucleotide sequence was synthesized and then inserted into the expression vector pFliTrx. The recombinant plasmid was transferred into an expression host Escherichia coli GI826 by electroporation, resulting in a recombinant E. coli expressing the peptide on the bacterial surface. Intramuscular injection of the epitope-expressing recombinant bacteria into chickens induced a specific serological response to serovar A. A. paragallinarum. The chickens given the recombinant E. coli showed significant protection against challenge with A. paragallinarum 0083. These results indicated a potential for the use of the mimotope in the development of molecular vaccines for infectious coryza.
Collapse
Affiliation(s)
- Hongjun Wang
- Key Laboratory of Preventive Veterinary Medicine of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
de Castro LA, Rodrigues Pedroso T, Kuchiishi SS, Ramenzoni M, Kich JD, Zaha A, Henning Vainstein M, Bunselmeyer Ferreira H. Variable number of tandem aminoacid repeats in adhesion-related CDS products in Mycoplasma hyopneumoniae strains. Vet Microbiol 2006; 116:258-69. [PMID: 16730926 DOI: 10.1016/j.vetmic.2006.04.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 04/03/2006] [Accepted: 04/05/2006] [Indexed: 11/28/2022]
Abstract
The Mycoplasma hyopneumoniae genome contains at least 22 regions with a variable number of tandem nucleotide repeats (VNTRs) within coding DNA sequences (CDSs). In this work, the VNTR-containing CDSs were analysed in order to evaluate their degree of variation, possible correlations with antigenic properties, and their potential to be used as a basis for a strain typing PCR assay. We have analysed the VNTRs in five M. hyopneumoniae strains (J, 7448, 7422, PMS, and 232), based on published genomic sequences and on amplified and sequenced DNA segments. These VNTRs are distributed among 12 genes, most of which encode putative surface proteins, including known adhesins. The number of repeat units in any of the VNTRs is highly variable among the analysed strains, but they are, without exception, translationally in frame, and, therefore, code for a variable number of aminoacid repeats (VNTARs). These VNTARs determine putative structural, physicochemical and antigenic variations in the corresponding proteins, with potential implications for aspects associated to M. hyopneumoniae pathogenicity, such as cell adhesion and interactions with the host immune system. Considering that the characterized VNTARs are relatively stable, at least in vitro, and their sizes are strain-specific, we have developed a VNTR-based PCR assay for M. hyopneumoniae strain identification, useful for enzootic pneumonia (EP) diagnosis, strain typing, and distinction of circulating field isolates from vaccine strains in animals vaccinated against EP.
Collapse
MESH Headings
- Adhesins, Bacterial/chemistry
- Adhesins, Bacterial/genetics
- Amino Acid Sequence
- Animals
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Adhesion/genetics
- Bacterial Outer Membrane Proteins/chemistry
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/immunology
- Base Sequence
- Blotting, Southern
- DNA, Bacterial/analysis
- DNA, Bacterial/chemistry
- Genes, Bacterial
- Genetic Variation
- Molecular Sequence Data
- Mycoplasma hyopneumoniae/genetics
- Mycoplasma hyopneumoniae/pathogenicity
- Pneumonia of Swine, Mycoplasmal/microbiology
- Polymerase Chain Reaction/methods
- Polymerase Chain Reaction/veterinary
- Sequence Alignment/veterinary
- Sequence Analysis, DNA
- Swine
- Tandem Repeat Sequences/genetics
- Tandem Repeat Sequences/immunology
Collapse
|
34
|
Mullen LM, Nair SP, Ward JM, Rycroft AN, Henderson B. Phage display in the study of infectious diseases. Trends Microbiol 2006; 14:141-7. [PMID: 16460941 PMCID: PMC7127285 DOI: 10.1016/j.tim.2006.01.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 01/05/2006] [Accepted: 01/20/2006] [Indexed: 12/01/2022]
Abstract
Microbial infections are dependent on the panoply of interactions between pathogen and host and identifying the molecular basis of such interactions is necessary to understand and control infection. Phage display is a simple functional genomic methodology for screening and identifying protein–ligand interactions and is widely used in epitope mapping, antibody engineering and screening for receptor agonists or antagonists. Phage display is also used widely in various forms, including the use of fragment libraries of whole microbial genomes, to identify peptide–ligand and protein–ligand interactions that are of importance in infection. In particular, this technique has proved successful in identifying microbial adhesins that are vital for colonization.
Collapse
Affiliation(s)
- Lisa M Mullen
- Division of Microbial Diseases, UCL Eastman Dental Institute, University College London, 256 Gray's Inn Road, London WC1X 8LD, UK.
| | | | | | | | | |
Collapse
|