1
|
O'Sullivan D, Dowling P, Joyce H, McAuley E, McCann A, Henry M, McGovern B, Barham P, Kelleher FC, Murphy J, Kennedy S, Swan N, Moriarty M, Clynes M, Larkin A. A novel inhibitory anti-invasive MAb isolated using phenotypic screening highlights AnxA6 as a functionally relevant target protein in pancreatic cancer. Br J Cancer 2017; 117:1326-1335. [PMID: 28881357 PMCID: PMC5672937 DOI: 10.1038/bjc.2017.306] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/17/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
Background: Discovery and validation of new antibody tractable targets is critical for the development of new antibody therapeutics to address unmet needs in oncology. Methods: A highly invasive clonal variant of the MDA-MB-435S cell line was used to generate monoclonal antibodies (MAbs), which were screened for anti-invasive activity against aggressive cancer cells in vitro. The molecular target of selected inhibitory MAb 9E1 was identified using immunoprecipitation/liquid chromatography-tandem mass spectrometry. The potential anti-tumour effects of MAb 9E1 were investigated in vitro together with immunohistochemical analysis of the 9E1 target antigen in normal and cancer tissues. Results: MAb 9E1 significantly decreases invasion in pancreatic, lung squamous and breast cancer cells and silencing of its target antigen, which was revealed as AnxA6, leads to markedly reduced invasive capacity of pancreatic and lung squamous cancer in vitro. IHC using MAb 9E1 revealed that AnxA6 exhibits a high prevalence of membrane immunoreactivity across aggressive tumour types with restricted expression observed in the majority of normal tissues. In pancreatic ductal adenocarcinoma, high AnxA6 IHC score correlated with the presence of tumour budding at the invasive front of tumours (P=0.082), the presence of perineural invasion (P= <0.0001) and showed a weak correlation with reduced survival (P=0.2242). Conclusions: This study highlights the use of phenotypic hybridoma screening as an effective strategy to select a novel function-blocking MAb, 9E1 with anti-cancer activity in vitro. Moreover, through characterisation of the 9E1 target antigen, AnxA6, our findings support further investigation of AnxA6 as a potential candidate target for antibody-mediated inhibition of pancreatic cancer.
Collapse
Affiliation(s)
- Dermot O'Sullivan
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Paul Dowling
- Department of Biology, National University of Ireland - Maynooth, Co. Kildare, Ireland
| | - Helena Joyce
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Edel McAuley
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Andrew McCann
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Brianan McGovern
- Department of Histopathology, St. Vincents' University Hospital, Elm Park, Dublin 4, Ireland
| | - Paul Barham
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Fergal C Kelleher
- Department of Medical Oncology, St. Vincents' University Hospital, Elm Park, Dublin 4, Ireland
| | - Jean Murphy
- Department of Histopathology, St. Vincents' University Hospital, Elm Park, Dublin 4, Ireland
| | - Susan Kennedy
- Department of Histopathology, St. Vincents' University Hospital, Elm Park, Dublin 4, Ireland
| | - Niall Swan
- Department of Histopathology, St. Vincents' University Hospital, Elm Park, Dublin 4, Ireland
| | - Michael Moriarty
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Annemarie Larkin
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
2
|
O’Sullivan D, Henry M, Joyce H, Walsh N, Auley EM, Dowling P, Swan N, Moriarty M, Barnham P, Clynes M, Larkin A. 7B7: a novel antibody directed against the Ku70/Ku80 heterodimer blocks invasion in pancreatic and lung cancer cells. Tumour Biol 2014; 35:6983-97. [DOI: 10.1007/s13277-014-1857-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/17/2014] [Indexed: 02/06/2023] Open
|
3
|
Xiong W, Luo Y, Zhang C, Tan D, Zuo S. Expression, purification of recombinant human mitochondrial transcription termination factor 3 (hMTERF3) and preparation of polyclonal antibody against hMTERF3. Appl Biochem Biotechnol 2012; 167:2318-29. [PMID: 22711491 DOI: 10.1007/s12010-012-9754-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/29/2012] [Indexed: 11/28/2022]
Abstract
In mammalian cells, a family of mitochondrial transcription termination factors (MTERFs) regulates mitochondrial gene expression. Mitochondrial transcription termination factor 3 (MTERF3) is the most conserved member of the MTERF family and a negative regulator of mammalian mitochondrial DNA transcription. To create a specific polyclonal antibody against human MTERF3 (hMTERF3), we first cloned hMTERF3 into prokaryotic expression vector pGEX-4T-1, and GST-hMTERF3 was efficiently expressed in Escherichia coli after induction by IPTG. The expressed GST-tagged hMTERF3 fusion protein was purified by passive electro-elution process and then used to immunize BALB/c mice, we obtained anti-GST-hMTERF3 polyclonal antibody purified by protein A column and determined the sensitivity and specificity of the antibody against human MTERF3 by enzyme-linked immunosorbent assay and Western blot assay. Furthermore, the full-length hMTERF3 protein expressed in human embryonic kidney 293T cells was detected by anti-GST-hMTERF3 in western blot analysis and immunofluorescence staining. Taken together, our results demonstrate the functionality of the mouse anti-GST-hMTERF3 polyclonal antibody which will provide a useful tool for further characterization of hMTERF3.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Dali University, 112 Wanhua Road, Dali 671000, China.
| | | | | | | | | |
Collapse
|
4
|
Xiong W, Huang W, Jiao Y, Ma J, Yu M, Ma M, Wu H, Tan D. Production, purification and characterization of mouse monoclonal antibodies against human mitochondrial transcription termination factor 2 (MTERF2). Protein Expr Purif 2011; 82:11-9. [PMID: 22094411 DOI: 10.1016/j.pep.2011.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 10/28/2011] [Accepted: 10/31/2011] [Indexed: 10/15/2022]
Abstract
Human mitochondrial transcription termination factor 2 (MTERF2) is a member of the mitochondrial transcription termination factors (MTERFs) family and a cell growth inhibitor. To create a specific mouse monoclonal antibody against human MTERF2, the full-length His-tag MTERF2 protein (1-385 aa) was expressed in Escherichia coli, and purified recombinant protein was injected into three BALB/c mice to perform an immunization procedure. Eight stable positive monoclonal cell lines were screened and established. ELISA results demonstrated that all antibody light chains were kappa, while the heavy chains displayed three subtypes IgG1, IgG2a, and IgG2b respectively. The sensitivity and specificity of the monoclonal antibodies against human MTERF2 were determined using immunoblotting, immunoprecipitation and immunofluorescence analyses. Furthermore, serum regulation of human MTERF2 protein expression levels in human glioma U251 cells was examined with these monoclonal antibodies and the results demonstrated that the expression level of MTERF2 protein was dramatically inhibited by the addition of serum to serum-starved cells. Taken together, our results demonstrate the functionality of these mouse anti-human MTERF2 monoclonal antibodies, which may provide a useful tool to elucidate the role of MTERF2 in human mitochondrial transcription as well as other potential activities. To our knowledge, this is the first report on the preparation and characterization of mouse monoclonal antibodies against human MTERF2.
Collapse
Affiliation(s)
- Wei Xiong
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, 002 Cuihu Road, Kunming 650091, PR China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Jarutat T, Nickels C, Frisch C, Stellmacher F, Hofig KP, Knappik A, Merz H. Selection of vimentin-specific antibodies from the HuCAL phage display library by subtractive panning on formalin-fixed, paraffin-embedded tissue. Biol Chem 2007; 388:651-8. [PMID: 17552912 DOI: 10.1515/bc.2007.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We describe the direct isolation of specific antibodies on formalin-fixed, paraffin-embedded (FFPE) tissue. The technique involves subtractive selection of a large and highly diverse combinatorial human antibody phage library (HuCAL) on lymphocyte FFPE tissue sections. Tissue sections from normal human tonsil tissue were used to deplete the library of binders to most housekeeping proteins. Mantle-cell lymphoma tissue was used for positive selection and enrichment of mantle cell or tumor-specific antibody phage. We established a high-throughput immunohistochemical method for screening of antibody clones selected from FFPE tissue. One recombinant antibody showed specific staining for interfollicular and mantle cells in FFPE tissue. Immunoprecipitation with this antibody and subsequent mass spectrometric analysis revealed specificity for vimentin.
Collapse
Affiliation(s)
- Tiantom Jarutat
- Department of Pathology, University Hospital of Schleswig-Holstein/Campus Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany.
| | | | | | | | | | | | | |
Collapse
|