1
|
Schaafsma E, Fugle CM, Wang X, Cheng C. Pan-cancer association of HLA gene expression with cancer prognosis and immunotherapy efficacy. Br J Cancer 2021; 125:422-432. [PMID: 33981015 PMCID: PMC8329209 DOI: 10.1038/s41416-021-01400-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/27/2021] [Accepted: 04/09/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The function of major histocompatibility complex (MHC) molecules is to bind peptide fragments derived from genomic mutations or pathogens and display them on the cell surface for recognition by cognate T cells to initiate an immune response. METHODS In this study, we provide a comprehensive investigation of HLA gene expression in a pan-cancer manner involving 33 cancer types. We utilised gene expression data from several databases and immune checkpoint blockade-treated patient cohorts. RESULTS We show that MHC expression varies strongly among cancer types and is associated with several genomic and immunological features. While immune cell infiltration was generally higher in tumours with higher HLA gene expression, CD4+ T cells showed significantly different correlations among cancer types, separating them into two clusters. Furthermore, we show that increased HLA gene expression is associated with prolonged survival in the majority of cancer types. Lastly, HLA gene expression is associated with patient response to immune checkpoint blockade, which is especially prominent for HLA class II expression in tumour biopsies taken during treatment. CONCLUSION We show that HLA gene expression is an important feature of tumour biology that has significant impact on patient prognosis.
Collapse
Affiliation(s)
- Evelien Schaafsma
- Department of Molecular and Systems Biology, Dartmouth College, Hanover, NH, USA
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Chloe M Fugle
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Xiaofeng Wang
- Department of Molecular and Systems Biology, Dartmouth College, Hanover, NH, USA
| | - Chao Cheng
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- The Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Wuerfel FM, Huebner H, Häberle L, Gass P, Hein A, Jud SM, Hack CC, Wunderle M, Schulz-Wendtland R, Erber R, Hartmann A, Ekici AB, Beckmann MW, Fasching PA, Ruebner M. HLA-G and HLA-F protein isoform expression in breast cancer patients receiving neoadjuvant treatment. Sci Rep 2020; 10:15750. [PMID: 32978482 PMCID: PMC7519664 DOI: 10.1038/s41598-020-72837-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
The immunosuppressive human leukocyte antigens HLA-G and HLA-F are expressed on trophoblast and malignant cells. Four membrane-bound and three soluble HLA-G protein isoforms have been described, which have different immunosuppressive potentials. HLA-F has three transcript variants, resulting in three different protein isoforms. The aim of this study was to evaluate the prognostic and predictive value of HLA-G and HLA-F protein isoform expression patterns in patients with breast cancer. Core biopsies were taken at diagnosis in patients with HER2+ (n = 28), luminal B-like (n = 49) and triple-negative (n = 38) breast cancers who received neoadjuvant chemotherapy. Expression levels of HLA-F and -G were correlated with the pathological complete response (pCR). Protein expression was determined by Western blot analysis, using two antibodies for each HLA, specific for different isoforms. The protein expression of HLA isoforms did not significantly differ between breast cancer subtypes. However, some initial indications were found for an association between the soluble HLA-G6 protein isoform and pCR in HER2+ breast cancer. The study provides preliminary evidence for the evaluation of HLA-G isoform expression, in particular HLA-G6, as a possible new marker for pCR in HER2+ breast cancer.
Collapse
Affiliation(s)
- Franziska M Wuerfel
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
| | - Hanna Huebner
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
| | - Lothar Häberle
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
| | - Paul Gass
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
| | - Alexander Hein
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
| | - Sebastian M Jud
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
| | - Carolin C Hack
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
| | - Marius Wunderle
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
| | - Rüdiger Schulz-Wendtland
- Institute of Diagnostic Radiology, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Ramona Erber
- Institute of Pathology, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Matthias W Beckmann
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
| | - Peter A Fasching
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany
| | - Matthias Ruebner
- Department of Gynaecology and Obstetrics, Erlangen University Hospital, Comprehensive Cancer Center Erlangen-EMN, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Universitätsstrasse 21-23, 91054, Erlangen, Germany.
| |
Collapse
|
3
|
Würfel FM, Winterhalter C, Trenkwalder P, Wirtz RM, Würfel W. European Patent in Immunoncology: From Immunological Principles of Implantation to Cancer Treatment. Int J Mol Sci 2019; 20:ijms20081830. [PMID: 31013867 PMCID: PMC6514949 DOI: 10.3390/ijms20081830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022] Open
Abstract
The granted European patent EP 2 561 890 describes a procedure for an immunological treatment of cancer. It is based on the principles of the HLA-supported communication of implantation and pregnancy. These principles ensure that the embryo is not rejected by the mother. In pregnancy, the placenta, more specifically the trophoblast, creates an “interface” between the embryo/fetus and the maternal immune system. Trophoblasts do not express the “original” HLA identification of the embryo/fetus (HLA-A to -DQ), but instead show the non-classical HLA groups E, F, and G. During interaction with specific receptors of NK cells (e.g., killer-immunoglobulin-like receptors (KIR)) and lymphocytes (lymphocyte-immunoglobulin-like receptors (LIL-R)), the non-classical HLA groups inhibit these immunocompetent cells outside pregnancy. However, tumors are known to be able to express these non-classical HLA groups and thus make use of an immuno-communication as in pregnancies. If this occurs, the prognosis usually worsens. This patent describes, in a first step, the profiling of the non-classical HLA groups in primary tumor tissue as well as metastases and recurrent tumors. The second step comprises tailored antibody therapies, which is the subject of this patent. In this review, we analyze the underlying mechanisms and describe the currently known differences between HLA-supported communication of implantation and that of tumors.
Collapse
Affiliation(s)
- Franziska M Würfel
- STRATIFYER Molecular Pathology GmbH, D-50935 Cologne, Werthmannstrasse 1c, 50935 Cologne, Germany.
| | | | | | - Ralph M Wirtz
- STRATIFYER Molecular Pathology GmbH, D-50935 Cologne, Werthmannstrasse 1c, 50935 Cologne, Germany.
| | | |
Collapse
|
4
|
Barton JC, Edwards CQ, Acton RT. HFE gene: Structure, function, mutations, and associated iron abnormalities. Gene 2015; 574:179-92. [PMID: 26456104 PMCID: PMC6660136 DOI: 10.1016/j.gene.2015.10.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/04/2015] [Accepted: 10/06/2015] [Indexed: 01/05/2023]
Abstract
The hemochromatosis gene HFE was discovered in 1996, more than a century after clinical and pathologic manifestations of hemochromatosis were reported. Linked to the major histocompatibility complex (MHC) on chromosome 6p, HFE encodes the MHC class I-like protein HFE that binds beta-2 microglobulin. HFE influences iron absorption by modulating the expression of hepcidin, the main controller of iron metabolism. Common HFE mutations account for ~90% of hemochromatosis phenotypes in whites of western European descent. We review HFE mapping and cloning, structure, promoters and controllers, and coding region mutations, HFE protein structure, cell and tissue expression and function, mouse Hfe knockouts and knockins, and HFE mutations in other mammals with iron overload. We describe the pertinence of HFE and HFE to mechanisms of iron homeostasis, the origin and fixation of HFE polymorphisms in European and other populations, and the genetic and biochemical basis of HFE hemochromatosis and iron overload.
Collapse
Affiliation(s)
- James C Barton
- Southern Iron Disorders Center, Birmingham, AL, USA and Department of Medicine; University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Corwin Q Edwards
- Department of Medicine, Intermountain Medical Center and University of Utah, Salt Lake City, UT, USA.
| | - Ronald T Acton
- Southern Iron Disorders Center, Birmingham, AL, USA and Department of Medicine; Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
5
|
Differential HFE gene expression is regulated by alternative splicing in human tissues. PLoS One 2011; 6:e17542. [PMID: 21407826 PMCID: PMC3048171 DOI: 10.1371/journal.pone.0017542] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 02/07/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The pathophysiology of HFE-derived Hereditary Hemochromatosis and the function of HFE protein in iron homeostasis remain uncertain. Also, the role of alternative splicing in HFE gene expression regulation and the possible function of the corresponding protein isoforms are still unknown. The aim of this study was to gain insights into the physiological significance of these alternative HFE variants. METHODOLOGY/PRINCIPAL FINDINGS Alternatively spliced HFE transcripts in diverse human tissues were identified by RT-PCR, cloning and sequencing. Total HFE transcripts, as well as two alternative splicing transcripts were quantified using a real-time PCR methodology. Intracellular localization, trafficking and protein association of GFP-tagged HFE protein variants were analysed in transiently transfected HepG2 cells by immunoprecipitation and immunofluorescence assays. Alternatively spliced HFE transcripts present both level- and tissue-specificity. Concerning the exon 2 skipping and intron 4 inclusion transcripts, the liver presents the lowest relative level, while duodenum presents one of the highest amounts. The protein resulting from exon 2 skipping transcript is unable to associate with β2M and TfR1 and reveals an ER retention. Conversely, the intron 4 inclusion transcript gives rise to a truncated, soluble protein (sHFE) that is mostly secreted by cells to the medium in association with β2M. CONCLUSIONS/SIGNIFICANCE HFE gene post-transcriptional regulation is clearly affected by a tissue-dependent alternative splicing mechanism. Among the corresponding proteins, a sHFE isoform stands out, which upon being secreted into the bloodstream, may act in remote tissues. It could be either an agonist or antagonist of the full length HFE, through hepcidin expression regulation in the liver or by controlling dietary iron absorption in the duodenum.
Collapse
|