1
|
Pump WC, Schulz R, Huyton T, Kunze-Schumacher H, Martens J, Hò GGT, Blasczyk R, Bade-Doeding C. Releasing the concept of HLA-allele specific peptide anchors in viral infections: A non-canonical naturally presented human cytomegalovirus-derived HLA-A*24:02 restricted peptide drives exquisite immunogenicity. HLA 2019; 94:25-38. [PMID: 30912293 PMCID: PMC6593758 DOI: 10.1111/tan.13537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/18/2019] [Accepted: 03/23/2019] [Indexed: 11/30/2022]
Abstract
T‐cell receptors possess the unique ability to survey and respond to their permanently modified ligands, self HLA‐I molecules bound to non‐self peptides of various origin. This highly specific immune function is impaired following hematopoietic stem cell transplantation (HSCT) for a timespan of several months needed for the maturation of T‐cells. Especially, the progression of HCMV disease in immunocompromised patients induces life‐threatening situations. Therefore, the need for a new immune system that delivers vital and potent CD8+ T‐cells carrying TCRs that recognize even one human cytomegalovirus (HCMV) peptide/HLA molecule and clear the viral infection long term becomes obvious. The transcription and translation of HCMV proteins in the lytic cycle is a precisely regulated cascade of processes, therefore, it is a highly sensitive challenge to adjust the exact time point of HCMV‐peptide recruitment over self‐peptides. We utilized soluble HLA technology in HCMV‐infected fibroblasts and sequenced naturally sHLA‐A*24:02 presented HCMV‐derived peptides. One peptide of 14 AAs length derived from the IE2 antigen induced the strongest T‐cell responses; this peptide can be detected with a low ranking score in general peptide prediction databanks. These results highlight the need for elaborate and HLA‐allele specific peptide selection.
Collapse
Affiliation(s)
- Wiebke C Pump
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Rebecca Schulz
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Trevor Huyton
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Jörg Martens
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Gia-Gia T Hò
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
2
|
Circulating miR-122 and miR-200a as biomarkers for fatal liver disease in ART-treated, HIV-1-infected individuals. Sci Rep 2017; 7:10934. [PMID: 28883647 PMCID: PMC5589757 DOI: 10.1038/s41598-017-11405-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 06/23/2017] [Indexed: 02/07/2023] Open
Abstract
Liver disease is one of the main contributors to the increased levels of morbidity and mortality seen in the HIV-1-infected, ART-treated population. Circulating miRNAs, particularly those located inside extracellular vesicles, are seen as promising biomarkers for a number of human disease conditions, including liver-related diseases. Here, we show that serum levels of miR-122 and miR-200a are greater in HIV/HCV co-infected individuals compared to HIV-1 mono-infected individuals. We also show that miR-122 and miR-200a are elevated in ART-treated, HIV-1-infected individuals prior to the development of fatal liver disease, suggesting that these miRNA may have some potential clinical utility as biomarkers. While this study is hypothesis generating, it shows clearly that both miR-122 and miR-200a are promising novel biomarkers for liver disease in the ART-treated, HIV-1-infected population.
Collapse
|
3
|
Kurosawa N, Wakata Y, Inobe T, Kitamura H, Yoshioka M, Matsuzawa S, Kishi Y, Isobe M. Novel method for the high-throughput production of phosphorylation site-specific monoclonal antibodies. Sci Rep 2016; 6:25174. [PMID: 27125496 PMCID: PMC4850396 DOI: 10.1038/srep25174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/11/2016] [Indexed: 12/03/2022] Open
Abstract
Threonine phosphorylation accounts for 10% of all phosphorylation sites compared with 0.05% for tyrosine and 90% for serine. Although monoclonal antibody generation for phospho-serine and -tyrosine proteins is progressing, there has been limited success regarding the production of monoclonal antibodies against phospho-threonine proteins. We developed a novel strategy for generating phosphorylation site-specific monoclonal antibodies by cloning immunoglobulin genes from single plasma cells that were fixed, intracellularly stained with fluorescently labeled peptides and sorted without causing RNA degradation. Our high-throughput fluorescence activated cell sorting-based strategy, which targets abundant intracellular immunoglobulin as a tag for fluorescently labeled antigens, greatly increases the sensitivity and specificity of antigen-specific plasma cell isolation, enabling the high-efficiency production of monoclonal antibodies with desired antigen specificity. This approach yielded yet-undescribed guinea pig monoclonal antibodies against threonine 18-phosphorylated p53 and threonine 68-phosphorylated CHK2 with high affinity and specificity. Our method has the potential to allow the generation of monoclonal antibodies against a variety of phosphorylated proteins.
Collapse
Affiliation(s)
- Nobuyuki Kurosawa
- Laboratory of Molecular and Cellular Biology, Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama-shi, Toyama, 930-8555, Japan
| | - Yuka Wakata
- Laboratory of Molecular and Cellular Biology, Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama-shi, Toyama, 930-8555, Japan
| | - Tomonao Inobe
- Frontier Research Core for Life Sciences, University of Toyama, 3190 Gofuku, Toyama-shi, Toyama, 930-8555, Japan
| | - Haruki Kitamura
- Graduate School of Science and Engineering for Education, University of Toyama, Toyama-shi, Toyama, 930-8555, Japan
| | - Megumi Yoshioka
- Laboratory of Molecular and Cellular Biology, Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama-shi, Toyama, 930-8555, Japan
| | - Shun Matsuzawa
- Medical &Biological Laboratories Co., Ltd., 15-502 Akaho, Komagane, Nagano, 399-4117, Japan
| | - Yoshihiro Kishi
- Medical &Biological Laboratories Co., Ltd., 15-502 Akaho, Komagane, Nagano, 399-4117, Japan
| | - Masaharu Isobe
- Laboratory of Molecular and Cellular Biology, Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gofuku, Toyama-shi, Toyama, 930-8555, Japan
| |
Collapse
|
4
|
Quigley MF, Almeida JR, Price DA, Douek DC. Unbiased molecular analysis of T cell receptor expression using template-switch anchored RT-PCR. ACTA ACUST UNITED AC 2011; Chapter 10:Unit10.33. [PMID: 21809317 DOI: 10.1002/0471142735.im1033s94] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A detailed knowledge of the principles that guide clonal selection within the memory and effector T cell pools is essential to further our understanding of the factors that influence effective T cell-mediated immunity and has direct implications for the rational design of vaccines and immunotherapies. This unit provides methods for the unbiased quantification and characterization of all expressed T cell receptor (TCR) gene products within any defined T cell population. The approach is based on a template-switch anchored reverse transcription-polymerase chain reaction (RT-PCR) and is optimized for the analysis of antigen-specific T cells isolated directly ex vivo.
Collapse
Affiliation(s)
- Máire F Quigley
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
5
|
van Bockel DJ, Price DA, Munier ML, Venturi V, Asher TE, Ladell K, Greenaway HY, Zaunders J, Douek DC, Cooper DA, Davenport MP, Kelleher AD. Persistent survival of prevalent clonotypes within an immunodominant HIV gag-specific CD8+ T cell response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:359-71. [PMID: 21135165 DOI: 10.4049/jimmunol.1001807] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
CD8(+) T cells play a significant role in the control of HIV replication, yet the associated qualitative and quantitative factors that determine the outcome of infection remain obscure. In this study, we examined Ag-specific CD8(+) TCR repertoires longitudinally in a cohort of HLA-B*2705(+) long-term nonprogressors with chronic HIV-1 infection using a combination of molecular clonotype analysis and polychromatic flow cytometry. In each case, CD8(+) T cell populations specific for the immunodominant p24 Gag epitope KRWIILGLNK (KK10; residues 263-272) and naturally occurring variants thereof, restricted by HLA-B*2705, were studied at multiple time points; in addition, comparative data were collected for CD8(+) T cell populations specific for the CMV pp65 epitope NLVPMVATV (NV9; residues 495-503), restricted by HLA-A*0201. Dominant KK10-specific clonotypes persisted for several years and exhibited greater stability than their contemporaneous NV9-specific counterparts. Furthermore, these dominant KK10-specific clonotypes exhibited cross-reactivity with antigenic variants and expressed significantly higher levels of CD127 (IL-7Rα) and Bcl-2. Of note, we also found evidence that promiscuous TCR α-chain pairing associated with alterations in fine specificity for KK10 variants could contribute to TCR β-chain prevalence. Taken together, these data suggest that an antiapoptotic phenotype and the ability to cross-recognize variant epitopes contribute to clonotype longevity and selection within the peripheral memory T cell pool in the presence of persistent infection with a genetically unstable virus.
Collapse
Affiliation(s)
- David J van Bockel
- St. Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ammaranond P, van Bockel DJ, Petoumenos K, McMurchie M, Finlayson R, Middleton MG, Davenport MP, Venturi V, Suzuki K, Gelgor L, Kaldor JM, Cooper DA, Kelleher AD. HIV immune escape at an immunodominant epitope in HLA-B*27-positive individuals predicts viral load outcome. THE JOURNAL OF IMMUNOLOGY 2010; 186:479-88. [PMID: 21115730 DOI: 10.4049/jimmunol.0903227] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The CTL response in HLA-B*27(+) HIV-infected individuals is characterized by an immunodominant response to a conserved epitope in gag p24 (aa 263-272, KRWIILGLNK; KK10). Mutations resulting in substitution of the arginine (R264) at position 2 of this epitope have been identified as escape mutations. Nineteen HLA-B*27(+) long-term nonprogressors were identified from an Australian cohort with an average follow-up of 16 y following infection. Viral and host genetic factors impacting on disease progression were determined at multiple time points. Twelve of 19 had wild-type sequences at codon 264 at all time points; 7 of 19 carried CTL escape variants. Median viral load and CD4(+) T cell counts were not significantly different between these groups at enrollment. Viral load, as judged by levels at their last visit (1,700 and 21,000 RNA copies/ml, respectively; p = 0.01) or by time-weighted area under the curve was higher in the escape group (p = 0.02). Escape mutants at other HLA-B*27-restricted epitopes were uncommon. Moreover, host polymorphisms, such as CCR5Δ32, CCR2-64I, and SDF1-3'A, or breadth of TCR repertoire responding to KK10 did not segregate to wild-type or escape groups. Host and viral factors were examined for a relationship to viral load. The only factor to affect viral load was the presence of the R264 escape mutations at the immunodominant epitope. CTL escape at R264 in the KK10 epitope is a major determinant of subsequent viral load in these HLA-B*27(+) individuals.
Collapse
Affiliation(s)
- Palanee Ammaranond
- Immunovirology Laboratory, St Vincent's Centre for Applied Medical Research, Darlinghurst, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|