1
|
Liu X, Li X, Wei H, Liu Y, Li N. Mast cells in colorectal cancer tumour progression, angiogenesis, and lymphangiogenesis. Front Immunol 2023; 14:1209056. [PMID: 37497234 PMCID: PMC10366593 DOI: 10.3389/fimmu.2023.1209056] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
The characteristics of the tumour cells, as well as how tumour cells interact with their surroundings, affect the prognosis of cancer patients. The resident cells in the tumour microenvironment are mast cells (MCs), which are known for their functions in allergic responses, but their functions in the cancer milieu have been hotly contested. Several studies have revealed a link between MCs and the development of tumours. Mast cell proliferation in colorectal cancer (CRC) is correlated with angiogenesis, the number of lymph nodes to which the malignancy has spread, and patient prognosis. By releasing angiogenic factors (VEGF-A, CXCL 8, MMP-9, etc.) and lymphangiogenic factors (VEGF-C, VEGF-D, etc.) stored in granules, mast cells play a significant role in the development of CRC. On the other hand, MCs can actively encourage tumour development via pathways including the c-kit/SCF-dependent signaling cascade and histamine production. The impact of MC-derived mediators on tumour growth, the prognostic importance of MCs in patients with various stages of colorectal cancer, and crosstalk between MCs and CRC cells in the tumour microenvironment are discussed in this article. We acknowledge the need for a deeper comprehension of the function of MCs in CRC and the possibility that targeting MCs might be a useful therapeutic approach in the future.
Collapse
Affiliation(s)
- Xiaoxin Liu
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinyu Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haotian Wei
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanyan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ningxu Li
- Department of Nephrology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Riquelme-Neira R, Walker-Vergara R, Fernández-Blanco JA, Vergara P. IL-10 Modulates the Expression and Activation of Pattern Recognition Receptors in Mast Cells. Int J Mol Sci 2023; 24:9875. [PMID: 37373041 DOI: 10.3390/ijms24129875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Mast cells (MCs) are involved in several immune-related responses, including those in bacterial infections, autoimmune diseases, inflammatory bowel diseases, and cancer, among others. MCs identify microorganisms by pattern recognition receptors (PRRs), activating a secretory response. Interleukin (IL)-10 has been described as an important modulator of MC responses; however, its role in PRR-mediated activation of MC is not fully understood. We analyzed the activation of TLR2, TLR4, TLR7 and Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) in mucosal-like MCs (MLMCs) and peritoneum-derived cultured MCs (PCMCs) from IL-10-/- and wild-type (WT) mice. IL-10-/- mice showed a reduced expression of TLR4 and NOD2 at week 6 and TLR7 at week 20 in MLMC. In MLMC and PCMC, TLR2 activation induced a reduced secretion of IL-6 and TNFα in IL-10-/- MCs. TLR4- and TLR7-mediated secretion of IL-6 and TNFα was not detected in PCMCs. Finally, no cytokine release was induced by NOD2 ligand, and responses to TLR2 and TLR4 were lower in MCs at 20 weeks. These findings indicate that PRR activation in MCs depends on the phenotype, ligand, age, and IL-10.
Collapse
Affiliation(s)
- Roberto Riquelme-Neira
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Sede Concepción, Chacabuco 539, Concepción 4070254, Chile
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Romina Walker-Vergara
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Sede Concepción, Chacabuco 539, Concepción 4070254, Chile
| | - Joan Antoni Fernández-Blanco
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Patrocinio Vergara
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
3
|
IL-33 promotes gastric tumour growth in concert with activation and recruitment of inflammatory myeloid cells. Oncotarget 2022; 13:785-799. [PMID: 35677533 PMCID: PMC9159270 DOI: 10.18632/oncotarget.28238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/07/2022] [Indexed: 01/01/2023] Open
Abstract
Interleukin-33 (IL-33) is an IL-1 family cytokine known to promote T-helper (Th) type 2 immune responses that are often deregulated in gastric cancer (GC). IL-33 is overexpressed in human gastric tumours suggesting a role in driving GC progression although a causal link has not been proven. Here, we investigated the impact of IL-33 genetic deficiency in the well-characterized gp130F/F mouse model of GC. Expression of IL-33 (and it’s cognate receptor, ST2) was increased in human and mouse GC progression. IL-33 deficient gp130F/F/Il33−/− mice had reduced gastric tumour growth and reduced recruitment of pro-tumorigenic myeloid cells including key mast cell subsets and type-2 (M2) macrophages. Cell sorting of gastric tumours revealed that IL-33 chiefly localized to gastric (tumour) epithelial cells and was absent from tumour-infiltrating immune cells (except modest IL-33 enrichment within CD11b+ CX3CR1+CD64+MHCII+ macrophages). By contrast, ST2 was absent from gastric epithelial cells and localized exclusively within the (non-macrophage) immune cell fraction together with mast cell markers, Mcpt1 and Mcpt2. Collectively, we show that IL-33 is required for gastric tumour growth and provide evidence of a likely mechanism by which gastric epithelial-derived IL-33 drives mobilization of tumour-promoting inflammatory myeloid cells.
Collapse
|
4
|
Jiménez M, Cervantes-García D, Córdova-Dávalos LE, Pérez-Rodríguez MJ, Gonzalez-Espinosa C, Salinas E. Responses of Mast Cells to Pathogens: Beneficial and Detrimental Roles. Front Immunol 2021; 12:685865. [PMID: 34211473 PMCID: PMC8240065 DOI: 10.3389/fimmu.2021.685865] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
Mast cells (MCs) are strategically located in tissues close to the external environment, being one of the first immune cells to interact with invading pathogens. They are long living effector cells equipped with different receptors that allow microbial recognition. Once activated, MCs release numerous biologically active mediators in the site of pathogen contact, which induce vascular endothelium modification, inflammation development and extracellular matrix remodeling. Efficient and direct antimicrobial mechanisms of MCs involve phagocytosis with oxidative and non-oxidative microbial destruction, extracellular trap formation, and the release of antimicrobial substances. MCs also contribute to host defense through the attraction and activation of phagocytic and inflammatory cells, shaping the innate and adaptive immune responses. However, as part of their response to pathogens and under an impaired, sustained, or systemic activation, MCs may contribute to tissue damage. This review will focus on the current knowledge about direct and indirect contribution of MCs to pathogen clearance. Antimicrobial mechanisms of MCs are addressed with special attention to signaling pathways involved and molecular weapons implicated. The role of MCs in a dysregulated host response that can increase morbidity and mortality is also reviewed and discussed, highlighting the complexity of MCs biology in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Mariela Jiménez
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Daniel Cervantes-García
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico.,Cátedras CONACYT, National Council of Science and Technology, Mexico City, Mexico
| | - Laura E Córdova-Dávalos
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Marian Jesabel Pérez-Rodríguez
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Claudia Gonzalez-Espinosa
- Department of Pharmacobiology, Centro de Investigación y de Estudios Avanzados (Cinvestav), Unidad Sede Sur, Mexico City, Mexico
| | - Eva Salinas
- Laboratory of Immunology, Department of Microbiology, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
5
|
Elieh Ali Komi D, Shafaghat F, Kovanen PT, Meri S. Mast cells and complement system: Ancient interactions between components of innate immunity. Allergy 2020; 75:2818-2828. [PMID: 32446274 DOI: 10.1111/all.14413] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/09/2020] [Accepted: 04/26/2020] [Indexed: 12/23/2022]
Abstract
The emergence and evolution of the complement system and mast cells (MCs) can be traced back to sea urchins and the ascidian Styela plicata, respectively. Acting as a cascade of enzymatic reactions, complement is activated through the classical (CP), the alternative (AP), and the lectin pathway (LP) based on the recognized molecules. The system's main biological functions include lysis, opsonization, and recruitment of phagocytes. MCs, beyond their classic role as master cells of allergic reactions, play a role in other settings, as well. Thus, MCs are considered as extrahepatic producers of complement proteins. They express various complement receptors, including those for C3a and C5a. C3a and C5a not only activate the C3aR and C5aR expressing MCs but also act as chemoattractants for MCs derived from different anatomic sites, such as from the bone marrow, human umbilical cord blood, or skin in vitro. Cross talk between MCs and complement is facilitated by the production of complement proteins by MCs and their activation by the MC tryptase. The coordinated activity between MCs and the complement system plays a key role, for example, in a number of allergic, cutaneous, and vascular diseases. At a molecular level, MCs and complement system interactions are based on the production of several complement zymogens by MCs and their activation by MC-released proteases. Additionally, at a cellular level, MCs act as potent effector cells of complement activation by expressing receptors for C3a and C5a through which their chemoattraction and activation are mediated by anaphylatoxins in a paracrine and autocrine fashion.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology Tabriz University of Medical Sciences Tabriz Iran
| | - Farzaneh Shafaghat
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Immunology Tabriz University of Medical Sciences Tabriz Iran
| | | | - Seppo Meri
- Department of Bacteriology and Immunology Immunobiology Research Program University of Helsinki Helsinki Finland
- HUSLAB Helsinki University Central Hospital Helsinki Finland
| |
Collapse
|
6
|
Aller MA, Arias N, Blanco-Rivero J, Arias J. Metabolism in Acute-On-Chronic Liver Failure: The Solution More than the Problem. Arch Med Res 2019; 50:271-284. [PMID: 31593852 DOI: 10.1016/j.arcmed.2019.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Chronic inflammatory liver disease with an acute deterioration of liver function is named acute-on-chronic inflammation and could be regulated by the metabolic impairments related to the liver dysfunction. In this way, the experimental cholestasis model is excellent for studying metabolism in both types of inflammatory responses. Along the evolution of this model, the rats develop biliary fibrosis and an acute-on-chronic decompensation. The acute decompensation of the liver disease is associated with encephalopathy, ascites, acute renal failure, an acute phase response and a splanchnic increase of pro- and anti-inflammatory cytokines. This multiorgan inflammatory dysfunction is mainly associated with a splanchnic and systemic metabolic switch with dedifferentiation of the epithelial, endothelial and mesothelial splanchnic barriers. Furthermore, a splanchnic infiltration by mast cells occurs, which suggests that these cells could carry out a compensatory metabolic role, especially through the modulation of hepatic and extrahepatic mitochondrial-peroxisome crosstalk. For this reason, we propose the hypothesis that mastocytosis in the acute-on-chronic hepatic insufficiency could represent the development of a survival metabolic mechanisms that mitigates the noxious effect of the hepatic functional deficit. A better understanding the pathophysiological response of the mast cells in liver insufficiency and portal hypertension would help to find new pathways for decreasing the high morbidity and mortality rate of these patients.
Collapse
Affiliation(s)
- Maria-Angeles Aller
- Department of Surgery, School of Medicine, Complutense University of Madrid, Madrid, Spain.
| | - Natalia Arias
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; INEUROPA (Instituto de Neurociencias del Principado de Asturias), Oviedo, Spain
| | - Javier Blanco-Rivero
- Department of Physiology, School of Medicine, Autonoma University of Madrid, Madrid, Spain, Instituto de Investigación Biomédica La Paz (IdIPAZ), Madrid, España; Centro de Investigación Biomédica en Red (Ciber) de Enfermedades Cardiovasculares, Madrid, España
| | - Jaime Arias
- Department of Surgery, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
7
|
Rapid Mast Cell Generation from Gata2 Reporter Pluripotent Stem Cells. Stem Cell Reports 2018; 11:1009-1020. [PMID: 30197119 PMCID: PMC6178197 DOI: 10.1016/j.stemcr.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022] Open
Abstract
Mast cells are tissue-resident immune cells. Their overgrowth/overactivation results in a range of common distressing, sometimes life-threatening disorders, including asthma, psoriasis, anaphylaxis, and mastocytosis. Currently, drug discovery is hampered by use of cancer-derived mast cell lines or primary cells. Cell lines provide low numbers of mature mast cells and are not representative of in vivo mast cells. Mast cell generation from blood/bone marrow gives poor reproducibility, requiring 8–12 weeks of culture. Here we report a method for the rapid/robust production of mast cells from pluripotent stem cells (PSCs). An advantageous Gata2Venus reporter enriches mast cells and progenitors as they differentiate from PSCs. Highly proliferative mouse mast cells and progenitors emerge after 2 weeks. This method is applicable for rapid human mast cell generation, and could enable the production of sufficient numbers of physiologically relevant human mast cells from patient induced PSCs for the study of mast cell-associated disorders and drug discovery. Efficient mast cell production is achieved with novel Gata2-reporter PSCs 14-day Gata2-reporter PSC culture produces mast cells and self-renewing progenitors Gata2-reporter mast cells have high protease content and degranulate Gata2-reporter iPSC method advances prospects for human mast cell research
Collapse
|
8
|
Mast Cell, the Neglected Member of the Tumor Microenvironment: Role in Breast Cancer. J Immunol Res 2018; 2018:2584243. [PMID: 29651440 PMCID: PMC5832101 DOI: 10.1155/2018/2584243] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/08/2017] [Accepted: 11/26/2017] [Indexed: 02/06/2023] Open
Abstract
Mast cells are unique tissue-resident immune cells that secrete a diverse array of biologically active compounds that can stimulate, modulate, or suppress the immune response. Although mounting evidence supports that mast cells are consistently infiltrating tumors, their role as either a driving or an opposite force for cancer progression is still controversial. Particularly, in breast cancer, their function is still under discussion. While some studies have shown a protective role, recent evidence indicates that mast cells enhance blood and lymphatic vessel formation. Interestingly, one of the most important components of the mast cell cargo, the serine protease tryptase, is a potent angiogenic factor, and elevated serum tryptase levels correlate with bad prognosis in breast cancer patients. Likewise, histamine is known to induce tumor cell proliferation and tumor growth. In agreement, mast cell depletion reduces the size of mammary tumors and metastasis in murine models that spontaneously develop breast cancer. In this review, we will discuss the evidence supporting protumoral and antitumoral roles of mast cells, emphasizing recent findings placing mast cells as important drivers of tumor progression, as well as the potential use of these cells or their mediators as therapeutic targets.
Collapse
|
9
|
Chelombitko MA, Fedorov AV, Ilyinskaya OP, Zinovkin RA, Chernyak BV. Role of Reactive Oxygen Species in Mast Cell Degranulation. BIOCHEMISTRY. BIOKHIMIIA 2016; 81:1564-1577. [PMID: 28259134 DOI: 10.1134/s000629791612018x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Mast cells are a heterogeneous multifunctional cellular population that promotes connective tissue homeostasis by slow release of biologically active substances, affecting primarily the permeability of vessels and vascular tone, maintenance of electrolyte and water balance, and composition of the extracellular matrix. Along with this, they can rapidly release inflammatory mediators and chemotactic factors that ensure the mobilization of effector innate immune cells to fight against a variety of pathogens. Furthermore, they play a key role in initiation of allergic reactions. Aggregation of high affinity receptors to IgE (FcεRI) results in rapid degranulation and release of inflammatory mediators. It is known that reactive oxygen species (ROS) participate in intracellular signaling and, in particular, stimulate production of several proinflammatory cytokines that regulate the innate immune response. In this review, we focus on known molecular mechanisms of FcεRI-dependent activation of mast cells and discuss the role of ROS in the regulation of this pathway.
Collapse
Affiliation(s)
- M A Chelombitko
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | | | | | | | | |
Collapse
|
10
|
Hiragun T, Yanase Y, Okabe T, Hiragun M, Kawai M, Hide M. Establishment of a mast cell line, NCL-2, without Kit mutation, derived from NC mouse bone marrow. FEBS Open Bio 2014; 4:342-6. [PMID: 24918047 PMCID: PMC4050185 DOI: 10.1016/j.fob.2014.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/26/2014] [Indexed: 11/29/2022] Open
Abstract
We established an immortal mast cell line without Kit mutation, NCL-2. NCL-2 cells could be maintained without additional growth factors. NCL-2 cells expressed FcεRI and released histamine and LTB4 in response to antigens. NCL-2 cells were tumorigenic but much less aggressive than P815 mastocytoma.
Immortal mast cell lines, such as RBL-2H3 and HMC-1 cells, are commonly utilized to investigate the function of mast cells. However, they are tumor cells carrying a gain-of-function mutation of Kit. We established an immortal mast cell line without Kit mutation, NCL-2, derived from NC mouse bone marrow. NCL-2 cells could be maintained without additional growth factors and thus could respond to exogenous growth signals. Moreover, NCL-2 cells expressed FcεRI and KIT, and release histamine and LTB4 in response to antigen stimulation. This cell line could be a useful tool to analyze proliferation, differentiation, and function of normal mast cells.
Collapse
Affiliation(s)
- Takaaki Hiragun
- Department of Dermatology, Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yuhki Yanase
- Department of Dermatology, Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Tsutomu Okabe
- Department of Dermatology, Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Makiko Hiragun
- Department of Dermatology, Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Mikio Kawai
- Department of Dermatology, Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Michihiro Hide
- Department of Dermatology, Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
11
|
Oda S, Uchida K, Wang X, Lee J, Shimada Y, Tominaga M, Kadowaki M. TRPM2 contributes to antigen-stimulated Ca²⁺ influx in mucosal mast cells. Pflugers Arch 2013; 465:1023-30. [PMID: 23371039 DOI: 10.1007/s00424-013-1219-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 01/10/2013] [Accepted: 01/10/2013] [Indexed: 11/29/2022]
Abstract
Food allergy (FA) is a common allergic disease without any currently available effective drug therapies. Mucosal mast cells (MMCs) play a particularly important role in FA, and the increase in their cytosolic Ca(2+) concentration ([Ca(2+)]cyt) is considered to be a principal component of the degranulation process. However, the mechanisms governing Ca(2+) influx remain poorly understood in MMCs. Recent reports have highlighted the functions of the transient receptor potential melastatin 2 (TRPM2) channel in immunocytes, including its role in monocyte chemokine production and macrophage phagocytic activity. Although TRPM2 gene expression has been demonstrated in mast cells, the significance of such expression remains virtually unknown. In this study, we found that antigen-stimulated degranulation was significantly reduced in mucosal-type bone marrow-derived mast cells (mBMMCs) prepared from TRPM2-knockout (TRPM2-KO) mice (TRPM2-KO mBMMCs) and was suppressed following the administration of three TRPM2 inhibitors with different chemical structures, including econazole, flufenamic acid (FFA), and 2-aminoethoxydiphenyl borate. Furthermore, the antigen-stimulated increase in [Ca(2+)]cyt was significantly decreased in TRPM2-KO mBMMCs and was also suppressed by the TRPM2 inhibitors econazole and FFA. In addition, thapsigargin-induced increase in [Ca(2+)]cyt was significantly decreased in TRPM2-KO mBMMCs. These results suggest that TRPM2 may participate in antigen-induced extracellular Ca(2+) influx and subsequent degranulation. In addition, TRPM2 inhibitors were shown to improve food allergic reactions in a mouse model. Together, these results suggest that TRPM2 inhibitors suppress MMC degranulation via regulation of the increase in [Ca(2+)]cyt. Thus, TRPM2 may play a key role in degranulation by modulating intracellular Ca(2+) in MMCs.
Collapse
Affiliation(s)
- Satoshi Oda
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | | | | | | | |
Collapse
|