Baldon EJ, Marengo EB, de Franco M, Starobinas N, Bueno V, Sant’Anna OA. Mycobacterium leprae Hsp65 administration reduces the lifespan of aged high antibody producer mice.
Immun Ageing 2014;
11:6. [PMID:
24669842 PMCID:
PMC3986931 DOI:
10.1186/1742-4933-11-6]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/22/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND
Aging process may result in immune modifications that lead to disruption of innate and acquired immunity mechanisms that may induce chronic-degenerative events. The heat shock proteins (Hsp), phylogeneticaly conserved among organisms, present as main function the ability of folding and refolding proteins, but they also are associated with chronic-degenerative disorders. Here were evaluated the role of M. leprae native Hsp65 (WT) and its point-mutated (K409A) on survival and anti-DNA and anti-Hsp65 antibody production of aged genetically selected mice for high (HIII) and low (LIII) antibody production; data from 120- and 270-days old mice (named "adult" or "aged", respectively) were compared.
RESULTS
WT Hsp65 administration induces reduction in the mean survival time of adult and aged female HIII mice, this effect being stronger in aged individuals. Surprisingly, the native protein administration increased the survival of aged female LIII when compared to K409A and control groups. No survival differences were observed in aged male mice after Hsp65 proteins inoculation. We observed increase in IgG1 anti-Hsp65 in WT and K409A aged HIII female mice groups and no marked changes in the anti-DNA (adult and aged HIII) and anti-Hsp65 IgG1 or IgG2a isotypes production in adult HIII female and aged male mice. LIII male mice presented increased anti-DNA and anti-Hsp65 IgG2a isotype production after WT or K409A injection, and LIII female groups showed no alterations.
CONCLUSIONS
The results revealed that the WT Hsp65 interferes with survival of aged HIII female mice without involvement of a remarkable IgG1 and IgG2a anti-DNA and anti-Hsp65 antibodies production. The deleterious effects of Hsp65 on survival time in aged HIII female mice could be linked to a gender-effect and are in agreement with those previously reported in lupus-prone mice.
Collapse