1
|
Kwiecień I, Rutkowska E, Polubiec-Kownacka M, Raniszewska A, Rzepecki P, Domagała-Kulawik J. Identification of PD-1 ligands: PD-L1 and PD-L2 on macrophages in lung cancer milieu by flow cytometry. Transl Lung Cancer Res 2021; 10:1679-1689. [PMID: 34012784 PMCID: PMC8107752 DOI: 10.21037/tlcr-20-1103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background The efficacy of immune checkpoint inhibitors (ICIs) remains unexpected and in some patients the resistance to anti-programmed death-1 (anti-PD-1) and anti-programmed death ligand 1 (anti-PD-L1) agents is observed. One of possible explanation may be PD-L2 activity. PD-1 ligands: PD-L1 and PD-L2 are present on cancer cells but also, not without significance, on alveolar macrophages (AMs) contributing to immune-suppression in the tumor microenvironment. The aim of this study was to analyse PD-L2, PD-L1 expression on AMs in bronchoalveolar lavage fluid (BALF) in relation to PD-1 positive T lymphocytes. Methods Seventeen patients with lung cancer were investigated. BALF cells from the lung with cancer (clBALF) and from the opposite “healthy” lung (hlBALF) and peripheral blood (PB) lymphocytes were investigated. Flow cytometry method was used. Results We found that 100% of CD68+ AMs from the clBALF were PD-L1 and PD-L2-positive. Unexpectedly, fluorescence minus one (FMO) PD-L1 and PD-L2 stained controls and isotype controls also showed strong autofluorescence. The hlBALF AMs exhibited a similar PD-L1 and PD-L2 autofluorescence. The median proportion of PD-1+ T lymphocytes was higher in the clBALF than the hlBALF and PB (28.9 vs. 23.4% vs. 15.6%, P=0.0281). Conclusions We discussed the opportunities of exploring the PD-1-PD-L1/PD-L2 pathway in the lung cancer environment, which may help to find new potential biomarkers for immunotherapy. We concluded that precise identification by flow cytometry of macrophages in the BALF is possible, but our study showed that the autofluorescence of macrophages did not allow to assess a real expression of PD-L2 as well as PD-L1 on AMs.
Collapse
Affiliation(s)
- Iwona Kwiecień
- Military Institute of Medicine, Department of Internal Medicine and Hematology, Laboratory of Hematology and Flow Cytometry, Warsaw, Poland
| | - Elżbieta Rutkowska
- Military Institute of Medicine, Department of Internal Medicine and Hematology, Laboratory of Hematology and Flow Cytometry, Warsaw, Poland
| | | | - Agata Raniszewska
- Military Institute of Medicine, Department of Internal Medicine and Hematology, Laboratory of Hematology and Flow Cytometry, Warsaw, Poland
| | - Piotr Rzepecki
- Department of Internal Medicine and Hematology, Military Institute of Medicine, Warsaw, Poland
| | - Joanna Domagała-Kulawik
- Medical University of Warsaw Department of Internal Medicine, Pulmonary Diseases and Allergy, Warsaw, Poland
| |
Collapse
|
2
|
Kopacz A, Klóska D, Werner E, Hajduk K, Grochot-Przęczek A, Józkowicz A, Piechota-Polańczyk A. A Dual Role of Heme Oxygenase-1 in Angiotensin II-Induced Abdominal Aortic Aneurysm in the Normolipidemic Mice. Cells 2021; 10:cells10010163. [PMID: 33467682 PMCID: PMC7830394 DOI: 10.3390/cells10010163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) bears a high risk of rupture and sudden death of the patient. The pathogenic mechanisms of AAA remain elusive, and surgical intervention represents the only treatment option. Heme oxygenase-1 (HO-1), a heme degrading enzyme, is induced in AAA, both in mice and humans. HO-1 was reported to mitigate AAA development in an angiotensin II (AngII)-induced model of AAA in hyperlipidemic ApoE-/- mice. Since the role of hyperlipidaemia in the pathogenesis of AAA remains controversial, we aimed to evaluate the significance of HO-1 in the development and progression of AAA in normolipidemic animals. The experiments were performed in HO-1-deficient mice and their wild-type counterparts. We demonstrated in non-hypercholesterolemic mice that the high-dose of AngII leads to the efficient formation of AAA, which is attenuated by HO-1 deficiency. Yet, if formed, they are significantly more prone to rupture upon HO-1 shortage. Differential susceptibility to AAA formation does not rely on enhanced inflammatory response or oxidative stress. AAA-resistant mice are characterized by an increase in regulators of aortic remodeling and angiotensin receptor-2 expression, significant medial thickening, and delayed blood pressure elevation in response to AngII. To conclude, we unveil a dual role of HO-1 deficiency in AAA in normolipidemic mice, where it protects against AAA development, but exacerbates the state of formed AAA.
Collapse
Affiliation(s)
- Aleksandra Kopacz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland; (A.K.); (D.K.); (E.W.); (K.H.); (A.G.-P.); (A.J.)
| | - Damian Klóska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland; (A.K.); (D.K.); (E.W.); (K.H.); (A.G.-P.); (A.J.)
| | - Ewa Werner
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland; (A.K.); (D.K.); (E.W.); (K.H.); (A.G.-P.); (A.J.)
- Department of Animal Reproduction, Anatomy and Genomic, Faculty of Animal Science, University of Agriculture, 30-059 Krakow, Poland
| | - Karolina Hajduk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland; (A.K.); (D.K.); (E.W.); (K.H.); (A.G.-P.); (A.J.)
| | - Anna Grochot-Przęczek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland; (A.K.); (D.K.); (E.W.); (K.H.); (A.G.-P.); (A.J.)
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland; (A.K.); (D.K.); (E.W.); (K.H.); (A.G.-P.); (A.J.)
| | - Aleksandra Piechota-Polańczyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland; (A.K.); (D.K.); (E.W.); (K.H.); (A.G.-P.); (A.J.)
- Correspondence:
| |
Collapse
|
3
|
Schaffer S, Maul-Pavicic A, Voll RE, Chevalier N. Optimized isolation of renal plasma cells for flow cytometric analysis. J Immunol Methods 2019; 474:112628. [PMID: 31254500 DOI: 10.1016/j.jim.2019.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/13/2019] [Accepted: 06/25/2019] [Indexed: 12/25/2022]
Abstract
Plasma cells (PCs) secrete antibodies and play an essential role in protective immunity, but also in pathogenesis of antibody-mediated diseases. Physiologically, PCs mainly reside within bone marrow and spleen. In autoimmune diseases such as systemic lupus erythematosus (SLE) autoantibody-producing PCs can also be found at sites of inflammation, e.g. in nephritic kidneys. Therefore, efficient methods are required to reliably analyze and compare PCs at different sites. Flow cytometry and ELISpot analyses are frequently employed for PC characterization and require the preparation of single cell suspensions. To that end, enzymatic digestion is commonly used to isolate immune cells from solid organs like kidneys, occasionally also from lymphoid organs. In this study we show that enzymatic digestion using collagenase may lead to a loss of certain surface markers, e.g. the PC markers CD138 and CD267 (TACI). Therefore, we established an optimized protocol for preparing renal single cells by merely applying mechanical tissue disruption. Omitting enzymatic digestion, this method enables a reliable characterization of viable renal PCs by flow cytometry and cell sorting. We further show that mechanic cell preparation is favorable for lymphocytic immune cell enrichment, while enzymatic disruption improves the yield of digitating or stroma cell populations.
Collapse
Affiliation(s)
- Sandra Schaffer
- Department of Rheumatology and Clinical Immunology, Medical Centre - University of Freiburg, Faculty of Medicine, 79106 Freiburg, Baden-Wuerttemberg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Andrea Maul-Pavicic
- Department of Rheumatology and Clinical Immunology, Medical Centre - University of Freiburg, Faculty of Medicine, 79106 Freiburg, Baden-Wuerttemberg, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Centre - University of Freiburg, Faculty of Medicine, 79106 Freiburg, Baden-Wuerttemberg, Germany; Center of Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Germany
| | - Nina Chevalier
- Department of Rheumatology and Clinical Immunology, Medical Centre - University of Freiburg, Faculty of Medicine, 79106 Freiburg, Baden-Wuerttemberg, Germany.
| |
Collapse
|
4
|
Yang C, Lu M, Chen W, He Z, Hou X, Feng M, Zhang H, Bo T, Zhou X, Yu Y, Zhang H, Zhao M, Wang L, Yu C, Gao L, Jiang W, Zhang Q, Zhao J. Thyrotropin aggravates atherosclerosis by promoting macrophage inflammation in plaques. J Exp Med 2019; 216:1182-1198. [PMID: 30940720 PMCID: PMC6504213 DOI: 10.1084/jem.20181473] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/07/2019] [Accepted: 02/11/2019] [Indexed: 12/31/2022] Open
Abstract
The increased cardiovascular risk in subclinical hypothyroidism has traditionally been attributed to the associated metabolic disorders. This paper, however, revealed that TSH can aggravate atherosclerosis by promoting macrophage inflammation in the plaque, which deepens our understanding of the significance of TSH elevation in subclinical hypothyroidism. Subclinical hypothyroidism is associated with cardiovascular diseases, yet the underlying mechanism remains largely unknown. Herein, in a common population (n = 1,103), TSH level was found to be independently correlated with both carotid plaque prevalence and intima-media thickness. Consistently, TSH receptor ablation in ApoE−/− mice attenuated atherogenesis, accompanied by decreased vascular inflammation and macrophage burden in atherosclerotic plaques. These results were also observed in myeloid-specific Tshr-deficient ApoE−/− mice, which indicated macrophages to be a critical target of the proinflammatory and atherogenic effects of TSH. In vitro experiments further revealed that TSH activated MAPKs (ERK1/2, p38α, and JNK) and IκB/p65 pathways in macrophages and increased inflammatory cytokine production and their recruitment of monocytes. Thus, the present study has elucidated the new mechanisms by which TSH, as an independent risk factor of atherosclerosis, aggravates vascular inflammation and contributes to atherogenesis.
Collapse
Affiliation(s)
- Chongbo Yang
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Ming Lu
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Wenbin Chen
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Zhao He
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China.,School of Medicine, Shandong University, Jinan, Shandong, China
| | - Xu Hou
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Mei Feng
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Hongjia Zhang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Laboratory for Cardiovascular Precision Medicine, Beijing, China
| | - Tao Bo
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Xiaoming Zhou
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Yong Yu
- Department of Sonography, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Haiqing Zhang
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Meng Zhao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Laicheng Wang
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Chunxiao Yu
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Ling Gao
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Wenjian Jiang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Laboratory for Cardiovascular Precision Medicine, Beijing, China
| | - Qunye Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Ministry of Public Health, the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| |
Collapse
|
5
|
Oxaliplatin Treatment Alters Systemic Immune Responses. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4650695. [PMID: 30906773 PMCID: PMC6398049 DOI: 10.1155/2019/4650695] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/22/2018] [Indexed: 12/14/2022]
Abstract
Purpose Oxaliplatin is a platinum-based chemotherapeutic agent demonstrating significant antitumor efficacy. Unlike conventional anticancer agents which are immunosuppressive, oxaliplatin has the capacity to stimulate immunological effects in response to the presentation of damage associated molecular patterns (DAMPs) elicited upon cell death. However, the effects of oxaliplatin treatment on systemic immune responses remain largely unknown. Aims of this study were to investigate the effects of oxaliplatin treatment on the proportions of (1) splenic T cells, B cells, macrophages, pro-/anti-inflammatory cytokines, gene expression of splenic cytokines, chemokines, and mediators; (2) double-positive and single-positive CD4+ and CD8+ T thymocytes; (3) bone-marrow hematopoietic stem and progenitor cells. Methods Male BALB/c mice received intraperitoneal injections of oxaliplatin (3mg/kg/d) or sterile water tri-weekly for 2 weeks. Leukocyte populations within the spleen, thymus, and bone-marrow were assessed using flow cytometry. RT-PCR was performed to characterise changes in splenic inflammation-associated genes. Results Oxaliplatin treatment reduced spleen size and cellularity (CD45+ cells), increased the proportion of CD4+, CD8+, and Treg cells, and elevated TNF-α expression. Oxaliplatin was selectively cytotoxic to B cells but had no effect on splenic macrophages. Oxaliplatin treatment altered the gene expression of several cytokines, chemokines, and cell mediators. Oxaliplatin did not deplete double-positive thymocytes but increased the single-positive CD8+ subset. There was also an increase in activated (CD69+) CD8+ T cells. Bone-marrow hematopoietic progenitor pool was demonstrably normal following oxaliplatin treatment when compared to the vehicle-treated cohort. Conclusion Oxaliplatin does not cause systemic immunosuppression and, instead, has the capacity to induce beneficial antitumor immune responses.
Collapse
|
6
|
Macrophage-derived IL-1β/NF-κB signaling mediates parenteral nutrition-associated cholestasis. Nat Commun 2018; 9:1393. [PMID: 29643332 PMCID: PMC5895696 DOI: 10.1038/s41467-018-03764-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 03/12/2018] [Indexed: 12/15/2022] Open
Abstract
In infants intolerant of enteral feeding because of intestinal disease, parenteral nutrition may be associated with cholestasis, which can progress to end-stage liver disease. Here we show the function of hepatic macrophages and phytosterols in parenteral nutrition-associated cholestasis (PNAC) pathogenesis using a mouse model that recapitulates the human pathophysiology and combines intestinal injury with parenteral nutrition. We combine genetic, molecular, and pharmacological approaches to identify an essential function of hepatic macrophages and IL-1β in PNAC. Pharmacological antagonism of IL-1 signaling or genetic deficiency in CCR2, caspase-1 and caspase-11, or IL-1 receptor (which binds both IL-1α and IL-1β) prevents PNAC in mice. IL-1β increases hepatocyte NF-κB signaling, which interferes with farnesoid X receptor and liver X receptor bonding to respective promoters of canalicular bile and sterol transporter genes (Abcc2, Abcb11, and Abcg5/8), resulting in transcriptional suppression and subsequent cholestasis. Thus, hepatic macrophages, IL-1β, or NF-κB may be targets for restoring bile and sterol transport to treat PNAC.
Collapse
|
7
|
Ponte R, Dupuy FP, Brimo F, Mehraj V, Brassard P, Belanger M, Yurchenko E, Jenabian MA, Bernard NF, Routy JP. Characterization of myeloid cell populations in human testes collected after sex reassignment surgery. J Reprod Immunol 2018; 125:16-24. [DOI: 10.1016/j.jri.2017.10.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/04/2017] [Accepted: 10/11/2017] [Indexed: 12/31/2022]
|
8
|
Loegl J, Hiden U, Nussbaumer E, Schliefsteiner C, Cvitic S, Lang I, Wadsack C, Huppertz B, Desoye G. Hofbauer cells of M2a, M2b and M2c polarization may regulate feto-placental angiogenesis. Reproduction 2016; 152:447-55. [DOI: 10.1530/rep-16-0159] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/17/2016] [Indexed: 12/21/2022]
Abstract
The human placenta comprises a special type of tissue macrophages, the Hofbauer cells (HBC), which exhibit M2 macrophage phenotype. Several subtypes of M2-polarized macrophages (M2a, M2b and M2c) exist in almost all tissues. Macrophage polarization depends on the way of macrophage activation and leads to the expression of specific cell surface markers and the acquisition of specific functions, including tissue remodeling and the promotion of angiogenesis. The placenta is a highly vascularized and rapidly growing organ, suggesting a role of HBC in feto-placental angiogenesis. We here aimed to characterize the specific polarization and phenotype of HBC and investigated the role of HBC in feto-placental angiogenesis. Therefore, HBC were isolated from third trimester placentas and their phenotype was determined by the presence of cell surface markers (FACS analysis) and secretion of cytokines (ELISA). HBC conditioned medium (CM) was analyzed for pro-angiogenic factors, and the effect of HBC CM on angiogenesis, proliferation and chemoattraction of isolated primary feto-placental endothelial cells (fpEC) was determined in vitro. Our results revealed that isolated HBC possess an M2 polarization, with M2a, M2b and M2c characteristics. HBC secreted the pro-angiogenic molecules VEGF and FGF2. Furthermore, HBC CM stimulated the in vitro angiogenesis of fpEC. However, compared with control medium, chemoattraction of fpEC toward HBC CM was reduced. Proliferation of fpEC was not affected by HBC CM. These findings demonstrate a paracrine regulation of feto-placental angiogenesis by HBC in vitro. Based on our collective results, we propose that the changes in HBC number or phenotype may affect feto-placental angiogenesis.
Collapse
|
9
|
Fry JL, Shiraishi Y, Turcotte R, Yu X, Gao YZ, Akiki R, Bachschmid M, Zhang Y, Morgan KG, Cohen RA, Seta F. Vascular Smooth Muscle Sirtuin-1 Protects Against Aortic Dissection During Angiotensin II-Induced Hypertension. J Am Heart Assoc 2015; 4:e002384. [PMID: 26376991 PMCID: PMC4599512 DOI: 10.1161/jaha.115.002384] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background Sirtuin-1 (SirT1), a nicotinamide adenine dinucleotide+–dependent deacetylase, is a key enzyme in the cellular response to metabolic, inflammatory, and oxidative stresses; however, the role of endogenous SirT1 in the vasculature has not been fully elucidated. Our goal was to evaluate the role of vascular smooth muscle SirT1 in the physiological response of the aortic wall to angiotensin II, a potent hypertrophic, oxidant, and inflammatory stimulus. Methods and Results Mice lacking SirT1 in vascular smooth muscle (ie, smooth muscle SirT1 knockout) had drastically high mortality (70%) caused by aortic dissection after angiotensin II infusion (1 mg/kg per day) but not after an equipotent dose of norepinephrine, despite comparable blood pressure increases. Smooth muscle SirT1 knockout mice did not show any abnormal aortic morphology or blood pressure compared with wild-type littermates. Nonetheless, in response to angiotensin II, aortas from smooth muscle SirT1 knockout mice had severely disorganized elastic lamellae with frequent elastin breaks, increased oxidant production, and aortic stiffness compared with angiotensin II–treated wild-type mice. Matrix metalloproteinase expression and activity were increased in the aortas of angiotensin II–treated smooth muscle SirT1 knockout mice and were prevented in mice overexpressing SirT1 in vascular smooth muscle or with use of the oxidant scavenger tempol. Conclusions Endogenous SirT1 in aortic smooth muscle is required to maintain the structural integrity of the aortic wall in response to oxidant and inflammatory stimuli, at least in part, by suppressing oxidant-induced matrix metalloproteinase activity. SirT1 activators could potentially be a novel therapeutic approach to prevent aortic dissection and rupture in patients at risk, such as those with hypertension or genetic disorders, such as Marfan’s syndrome.
Collapse
Affiliation(s)
- Jessica L Fry
- Vascular Biology Section, Boston University Medical Campus, Boston, MA (J.L.F., Y.S., R.A., M.B., R.A.C., F.S.)
| | - Yasunaga Shiraishi
- Vascular Biology Section, Boston University Medical Campus, Boston, MA (J.L.F., Y.S., R.A., M.B., R.A.C., F.S.)
| | - Raphaël Turcotte
- Department of Biomedical Engineering, Boston University, Boston, MA (R.T., Y.Z.G., Y.Z.) Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA (R.T.)
| | - Xunjie Yu
- Department of Mechanical Engineering, Boston University, Boston, MA (X.Y., Y.Z.)
| | - Yuan Z Gao
- Department of Biomedical Engineering, Boston University, Boston, MA (R.T., Y.Z.G., Y.Z.) Health Science Department, Boston University, Boston, MA (Y.Z.G., K.G.M.)
| | - Rachid Akiki
- Vascular Biology Section, Boston University Medical Campus, Boston, MA (J.L.F., Y.S., R.A., M.B., R.A.C., F.S.)
| | - Markus Bachschmid
- Vascular Biology Section, Boston University Medical Campus, Boston, MA (J.L.F., Y.S., R.A., M.B., R.A.C., F.S.)
| | - Yanhang Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA (R.T., Y.Z.G., Y.Z.) Department of Mechanical Engineering, Boston University, Boston, MA (X.Y., Y.Z.)
| | - Kathleen G Morgan
- Health Science Department, Boston University, Boston, MA (Y.Z.G., K.G.M.)
| | - Richard A Cohen
- Vascular Biology Section, Boston University Medical Campus, Boston, MA (J.L.F., Y.S., R.A., M.B., R.A.C., F.S.)
| | - Francesca Seta
- Vascular Biology Section, Boston University Medical Campus, Boston, MA (J.L.F., Y.S., R.A., M.B., R.A.C., F.S.)
| |
Collapse
|
10
|
Krishnan SM, Dowling JK, Ling YH, Diep H, Chan CT, Ferens D, Kett MM, Pinar A, Samuel CS, Vinh A, Arumugam TV, Hewitson TD, Kemp-Harper BK, Robertson AAB, Cooper MA, Latz E, Mansell A, Sobey CG, Drummond GR. Inflammasome activity is essential for one kidney/deoxycorticosterone acetate/salt-induced hypertension in mice. Br J Pharmacol 2015; 173:752-65. [PMID: 26103560 DOI: 10.1111/bph.13230] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/16/2015] [Accepted: 06/13/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Inflammasomes are multimeric complexes that facilitate caspase-1-mediated processing of the pro-inflammatory cytokines IL-1β and IL-18. Clinical hypertension is associated with renal inflammation and elevated circulating levels of IL-1β and IL-18. Therefore, we investigated whether hypertension in mice is associated with increased expression and/or activation of the inflammasome in the kidney, and if inhibition of inflammasome activity reduces BP, markers of renal inflammation and fibrosis. EXPERIMENTAL APPROACH Wild-type and inflammasome-deficient ASC(-/-) mice were uninephrectomized and received deoxycorticosterone acetate and saline to drink (1K/DOCA/salt). Control mice were uninephrectomized but received a placebo pellet and water. BP was measured by tail cuff; renal expression of inflammasome subunits and inflammatory markers was measured by real-time PCR and immunoblotting; macrophage and collagen accumulation was assessed by immunohistochemistry. KEY RESULTS 1K/DOCA/salt-induced hypertension in mice was associated with increased renal mRNA expression of inflammasome subunits NLRP3, ASC and pro-caspase-1, and the cytokine, pro-IL-1β, as well as protein levels of active caspase-1 and mature IL-1β. Following treatment with 1K/DOCA/salt, ASC(-/-) mice displayed blunted pressor responses and were also protected from increases in renal expression of IL-6, IL-17A, CCL2, ICAM-1 and VCAM-1, and accumulation of macrophages and collagen. Finally, treatment with a novel inflammasome inhibitor, MCC950, reversed hypertension in 1K/DOCA/salt-treated mice. CONCLUSIONS AND IMPLICATIONS Renal inflammation, fibrosis and elevated BP induced by 1K/DOCA/salt treatment are dependent on inflammasome activity, highlighting the inflammasome/IL-1β pathway as a potential therapeutic target in hypertension.
Collapse
Affiliation(s)
- S M Krishnan
- Department of Pharmacology, Monash University, Clayton, Vic., Australia
| | - J K Dowling
- Centre for Innate Immunity and Infectious Diseases, MIMR-PHI Institute of Medical Research, Clayton, Vic., Australia
| | - Y H Ling
- Department of Pharmacology, Monash University, Clayton, Vic., Australia
| | - H Diep
- Department of Pharmacology, Monash University, Clayton, Vic., Australia
| | - C T Chan
- Department of Pharmacology, Monash University, Clayton, Vic., Australia
| | - D Ferens
- Department of Pharmacology, Monash University, Clayton, Vic., Australia
| | - M M Kett
- Department of Physiology, Monash University, Clayton, Vic., Australia
| | - A Pinar
- Centre for Innate Immunity and Infectious Diseases, MIMR-PHI Institute of Medical Research, Clayton, Vic., Australia
| | - C S Samuel
- Department of Pharmacology, Monash University, Clayton, Vic., Australia
| | - A Vinh
- Department of Pharmacology, Monash University, Clayton, Vic., Australia
| | - T V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - T D Hewitson
- Department of Nephrology, Royal Melbourne Hospital, Parkville, Vic., Australia
| | - B K Kemp-Harper
- Department of Pharmacology, Monash University, Clayton, Vic., Australia
| | - A A B Robertson
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - M A Cooper
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - E Latz
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany.,Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.,German Center for Neurodegenerative Diseases, Bonn, Germany
| | - A Mansell
- Centre for Innate Immunity and Infectious Diseases, MIMR-PHI Institute of Medical Research, Clayton, Vic., Australia
| | - C G Sobey
- Department of Pharmacology, Monash University, Clayton, Vic., Australia.,Department of Surgery, Monash Medical Centre, Southern Clinical School, Monash University, Clayton, Vic., Australia
| | - G R Drummond
- Department of Pharmacology, Monash University, Clayton, Vic., Australia.,Department of Surgery, Monash Medical Centre, Southern Clinical School, Monash University, Clayton, Vic., Australia
| |
Collapse
|
11
|
Moore JP, Vinh A, Tuck KL, Sakkal S, Krishnan SM, Chan CT, Lieu M, Samuel CS, Diep H, Kemp-Harper BK, Tare M, Ricardo SD, Guzik TJ, Sobey CG, Drummond GR. M2 macrophage accumulation in the aortic wall during angiotensin II infusion in mice is associated with fibrosis, elastin loss, and elevated blood pressure. Am J Physiol Heart Circ Physiol 2015; 309:H906-17. [PMID: 26071547 DOI: 10.1152/ajpheart.00821.2014] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 06/08/2015] [Indexed: 11/22/2022]
Abstract
Macrophages accumulate in blood vessels during hypertension. However, their contribution to vessel remodeling is unknown. In the present study, we examined the polarization state of macrophages (M1/M2) in aortas of mice during hypertension and investigated whether antagonism of chemokine receptors involved in macrophage accumulation reduces vessel remodeling and blood pressure (BP). Mice treated with ANG II (0.7 mg·kg(-1)·day(-1), 14 days) had elevated systolic BP (158 ± 3 mmHg) compared with saline-treated animals (122 ± 3 mmHg). Flow cytometry revealed that ANG II infusion increased numbers of CD45(+)CD11b(+)Ly6C(hi) monocytes and CD45(+)CD11b(+)F4/80(+) macrophages by 10- and 2-fold, respectively. The majority of macrophages were positive for the M2 marker CD206 but negative for the M1 marker inducible nitric oxide synthase. Expression of other M2 genes (arginase-1, Fc receptor-like S scavenger receptor, and receptor-1) was elevated in aortas from ANG II-treated mice, whereas M1 genes [TNF and chemokine (C-X-C motif) ligand 2] were unaltered. A PCR array to identify chemokine receptor targets for intervention revealed chemokine (C-C motif) receptor 2 (CCR2) to be upregulated in aortas from ANG II-treated mice, while flow cytometry identified Ly6C(hi) monocytes as the main CCR2-expressing cell type. Intervention with a CCR2 antagonist (INCB3344; 30 mg·kg(-1)·day(-1)), 7 days after the commencement of ANG II infusion, reduced aortic macrophage numbers. INCB334 also reduced aortic collagen deposition, elastin loss, and BP in ANG II-treated mice. Thus, ANG II-dependent hypertension in mice is associated with Ly6C(hi) monocyte and M2 macrophage accumulation in the aorta. Inhibition of macrophage accumulation with a CCR2 antagonist prevents ANG II-induced vessel fibrosis and elevated BP, highlighting this as a promising approach for the future treatment of vessel remodeling/stiffening in hypertension.
Collapse
Affiliation(s)
- Jeffrey P Moore
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Antony Vinh
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Kellie L Tuck
- School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Samy Sakkal
- School of Biomedical Sciences, Victoria University, St Albans, Victoria, Australia
| | - Shalini M Krishnan
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Christopher T Chan
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Maggie Lieu
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Chrishan S Samuel
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Henry Diep
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | | | - Marianne Tare
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Sharon D Ricardo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Tomasz J Guzik
- Translational Medicine Laboratory, Department of Internal and Agricultural Medicine, Jagiellonian University School of Medicine, Cracow, Poland; and
| | - Christopher G Sobey
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Department of Surgery, Monash Medical Centre, Southern Clinical School, Monash University, Clayton, Victoria, Australia
| | - Grant R Drummond
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Department of Surgery, Monash Medical Centre, Southern Clinical School, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
12
|
Legouis D, Bataille A, Hertig A, Vandermeersch S, Simon N, Rondeau E, Galichon P. Ex vivo analysis of renal proximal tubular cells. BMC Cell Biol 2015; 16:12. [PMID: 25881040 PMCID: PMC4379601 DOI: 10.1186/s12860-015-0058-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/02/2015] [Indexed: 12/02/2022] Open
Abstract
Background Experimental models are inevitably a compromise between accurately reproducing a pathological situation and schematically simplifying it, which is intended to provide both relevance and conclusiveness. In-vivo models are very relevant, but multiple cell-types undergoing various changes may hinder the observation of individual molecular events. Results Here, we describe a method for analyzing and isolating specific cell types from the kidney and studying the phenotype they have acquired in vivo. Using flow cytometry, immunofluorescence, and RT-PCR, we show that our method is suitable for studying and isolating proximal tubular cells with an anti Prominin-1 antibody. Kidneys are subjected to mechanical dissociation followed by flow-cytometry analysis. Hundreds of thousands of proximal tubular cells are then isolated by magnetic separation followed by direct analysis or primary cell culture. Using our method, we detect phenotypic changes in the proximal tubular cells after renal ischemia reperfusion, and we isolate the proximal tubular cells, with a purity over 80%. Conclusions This method is efficient, quick, simple, and cheap, and should be useful for studying cell-type specific parameters after in vivo experimental studies. It is also a simple method to obtain a specific primary cell culture from any animal strain. Electronic supplementary material The online version of this article (doi:10.1186/s12860-015-0058-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Alexandre Hertig
- INSERM, UMR-S1155, Paris, France. .,UPMC, Sorbonne Universités, Paris, 6, France. .,Urgences Néphrologiques et Transplantation Rénale, APHP, Paris, France.
| | | | | | - Eric Rondeau
- INSERM, UMR-S1155, Paris, France. .,UPMC, Sorbonne Universités, Paris, 6, France. .,Urgences Néphrologiques et Transplantation Rénale, APHP, Paris, France.
| | - Pierre Galichon
- INSERM, UMR-S1155, Paris, France. .,UPMC, Sorbonne Universités, Paris, 6, France. .,Urgences Néphrologiques et Transplantation Rénale, APHP, Paris, France.
| |
Collapse
|
13
|
Zhou H, Gunsten SP, Zhegalova NG, Bloch S, Achilefu S, Christopher Holley J, Schweppe D, Akers W, Brody SL, Eades WC, Berezin MY. Visualization of pulmonary clearance mechanisms via noninvasive optical imaging validated by near-infrared flow cytometry. Cytometry A 2015; 87:419-27. [PMID: 25808737 DOI: 10.1002/cyto.a.22658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 02/05/2015] [Accepted: 02/24/2015] [Indexed: 12/21/2022]
Abstract
In vivo optical imaging with near-infrared (NIR) probes is an established method of diagnostics in preclinical and clinical studies. However, the specificities of these probes are difficult to validate ex vivo due to the lack of NIR flow cytometry. To address this limitation, we modified a flow cytometer to include an additional NIR channel using a 752 nm laser line. The flow cytometry system was tested using NIR microspheres and cell lines labeled with a combination of visible range and NIR fluorescent dyes. The approach was verified in vivo in mice evaluated for immune response in lungs after intratracheal delivery of the NIR contrast agent. Flow cytometry of cells obtained from the lung bronchoalveolar lavage demonstrated that the NIR dye was taken up by pulmonary macrophages as early as 4-h post-injection. This combination of optical imaging with NIR flow cytometry extends the capability of imaging and enables complementation of in vivo imaging with cell-specific studies.
Collapse
Affiliation(s)
- Haiying Zhou
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
He Q, Yu W, Wu J, Chen C, Lou Z, Zhang Q, Zhao J, Wang J, Xiao B. Intranasal LPS-mediated Parkinson's model challenges the pathogenesis of nasal cavity and environmental toxins. PLoS One 2013; 8:e78418. [PMID: 24250796 PMCID: PMC3826714 DOI: 10.1371/journal.pone.0078418] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/19/2013] [Indexed: 01/09/2023] Open
Abstract
Accumulating evidence implicates the relationship between neuroinflammation and pathogenesis in idiopathic Parkinson's disease (iPD). The nose has recently been considered a gate way to the brain which facilitates entry of environmental neurotoxin into the brain. Our study aims to build a PD model by a natural exposure route. In this report, we establish a new endotoxin-based PD model in mice by unilateral intranasal (i.n.) instillation of the lipopolysaccharides (LPS) every other day for 5 months. These mice display a progressive hypokinesia, selective loss of dopaminergic neurons, and reduction in striatal dopamine (DA) content, as well as α-synuclein aggregation in the SN, without systemic inflammatory and immune responses. This new PD model provides a tool for studying the inflammation-mediated chronic pathogenesis and searching for therapeutic intervention in glia-neuron pathway that will slow or halt neurodegeneration in PD.
Collapse
Affiliation(s)
- Qing He
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
- Department of Neurology, Shanghai Jiaotong University Affiliated First People’s Hospital, Shanghai, China
| | - Wenbo Yu
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
- Department of Physical Test, Nanjing Medical University, Affiliated Nanjing Brain Hospital, Nanjing, China
| | - Jianjun Wu
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chan Chen
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiyin Lou
- Department of Neurology, Xinhua Hospital Affiliated To Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiong Zhang
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Zhao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- * E-mail: (BX); (JW)
| | - Baoguo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
- * E-mail: (BX); (JW)
| |
Collapse
|