1
|
Koo S, Offner R, Haile SM, Brosig A, Hähnel V, Gruber M, Burkhardt R, Ahrens N. Granulocyte concentrate splitting does not affect phenotype and function. Transfusion 2023; 63:393-401. [PMID: 36519400 DOI: 10.1111/trf.17217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND More granulocyte concentrates (GCs) could be produced for more patients from the same donor if apheresis bags were split and stored for longer periods of time. Hence, we tested the hypothesis that splitting and extension of storage of GCs do not impair granulocyte function or viability. STUDY DESIGN AND METHODS Granulocyte apheresis concentrates were produced using modified fluid gelatin as a separation enhancer, split into two portions, and stored for 24 and 48 h. Granulocyte function, represented by cell migration, reactive oxygen species (ROS) production, and neutrophil extracellular trap formation (NETosis), was measured by live-cell imaging. ROS production, adhesive surface protein expression, and viability were measured by flow cytometry. RESULTS Splitting had no effect on any of the tested parameters. After 24 h of storage, live-cell imaging showed no significant difference in migration, time to maximum ROS production, time to half-maximum NETosis, viability, or CD11b expression, but ROS production induced by phorbol 12-myristate 13-acetate (PMA) decreased from an initial median fluorescence intensity of 1775-590 artificial units. After 48 h, PMA-induced ROS production, viability, and migration declined, as reflected by decreases in median total distance (119 vs. 63.5 μm) and median Euclidean distance (30.75 vs. 14.3 μm). CONCLUSION Splitting GC products has no effect on granulocyte viability or function, but extended storage >24 h does compromise granulocyte function. The findings confirm that GCs should be transfused within 24 h of collection. Longer storage cannot be recommended.
Collapse
Affiliation(s)
- Sebastian Koo
- Institute for Clinical Chemistry and Laboratory Medicine, Transfusion Medicine, University Hospital Regensburg, Raubling, Germany.,Department of Anesthesiology, University Hospital Regensburg, Raubling, Germany
| | - Robert Offner
- Institute for Clinical Chemistry and Laboratory Medicine, Transfusion Medicine, University Hospital Regensburg, Raubling, Germany
| | - Sophie-Marie Haile
- Department of Anesthesiology, University Hospital Regensburg, Raubling, Germany
| | - Andreas Brosig
- Institute for Clinical Chemistry and Laboratory Medicine, Transfusion Medicine, University Hospital Regensburg, Raubling, Germany
| | - Viola Hähnel
- Institute for Clinical Chemistry and Laboratory Medicine, Transfusion Medicine, University Hospital Regensburg, Raubling, Germany
| | - Michael Gruber
- Department of Anesthesiology, University Hospital Regensburg, Raubling, Germany
| | - Ralph Burkhardt
- Institute for Clinical Chemistry and Laboratory Medicine, Transfusion Medicine, University Hospital Regensburg, Raubling, Germany
| | - Norbert Ahrens
- Institute for Clinical Chemistry and Laboratory Medicine, Transfusion Medicine, University Hospital Regensburg, Raubling, Germany.,Amedes MVZ for Laboratory Diagnostics, University Hospital Regensburg, Raubling, Germany
| |
Collapse
|
2
|
Okamoto S, Miyano K, Choshi T, Sugisawa N, Nishiyama T, Kotouge R, Yamamura M, Sakaguchi M, Kinoshita R, Tomonobu N, Katase N, Sasaki K, Nishina S, Hino K, Kurose K, Oka M, Kubota H, Ueno T, Hirai T, Fujiwara H, Kawai C, Itadani M, Morihara A, Matsushima K, Kanegasaki S, Hoffman RM, Yamauchi A, Kuribayashi F. Inhibition of pancreatic cancer-cell growth and metastasis in vivo by a pyrazole compound characterized as a cell-migration inhibitor by an in vitro chemotaxis assay. Biomed Pharmacother 2022; 155:113733. [DOI: 10.1016/j.biopha.2022.113733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022] Open
|
3
|
Fine definition of the epitopes on the human gp91 phox/NOX2 for the monoclonal antibodies CL-5 and 48. J Immunol Methods 2021; 501:113213. [PMID: 34971634 DOI: 10.1016/j.jim.2021.113213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 11/21/2022]
Abstract
Superoxide-producing NADPH oxidase, gp91phox/NOX2, in phagocytes plays a critical role in the host defenses against pathogens. Moreover, gp91phox/NOX2 contributes to the oxidative stress in endothelial cells. Therefore, investigating the level of gp91phox/NOX2 with immunoblotting is important for estimating the amount of superoxide produced. Here, we showed that the epitopes in human gp91phox/NOX2 recognized by monoclonal antibodies (mAbs) CL-5 and 48 were in amino acids 132-147 and 136-144, respectively. Although the epitopes were close to the N-glycosylation sites, N-glycan maturation did not affect mAbs recognition. When Pro-136 was substituted with Arg, the corresponding mouse residue, human gp91phox/NOX2 was not recognized by mAbs CL-5 and 48; however, the substitution did not affect gp91phox/NOX2-based oxidase activity. This finding explains why these mAbs specifically recognize the human but not mouse gp91phox/NOX2. Hence, these mAbs are useful for investigating the level of gp91phox/NOX2 without amino acid substitutions in the epitopes.
Collapse
|
4
|
Miyano K, Okamoto S, Yamauchi A, Kawai C, Kajikawa M, Kiyohara T, Tamura M, Taura M, Kuribayashi F. The NADPH oxidase NOX4 promotes the directed migration of endothelial cells by stabilizing vascular endothelial growth factor receptor 2 protein. J Biol Chem 2020; 295:11877-11890. [PMID: 32616654 DOI: 10.1074/jbc.ra120.014723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Indexed: 11/06/2022] Open
Abstract
Directed migration of endothelial cells (ECs) is an important process during both physiological and pathological angiogenesis. The binding of vascular endothelial growth factor (VEGF) to VEGF receptor-2 (VEGFR-2) on the EC surface is necessary for directed migration of these cells. Here, we used TAXIScan, an optically accessible real-time horizontal cell dynamics assay approach, and demonstrate that reactive oxygen species (ROS)-producing NADPH oxidase 4 (NOX4), which is abundantly expressed in ECs, mediates VEGF/VEGFR-2-dependent directed migration. We noted that a continuous supply of endoplasmic reticulum (ER)-retained VEGFR-2 to the plasma membrane is required to maintain VEGFR-2 at the cell surface. siRNA-mediated NOX4 silencing decreased the ER-retained form of VEGFR-2, resulting in decreased cell surface expression levels of the receptor. We also found that ER-localized NOX4 interacts with ER-retained VEGFR-2 and thereby stabilizes this ER-retained form at the protein level in the ER. We conclude that NOX4 contributes to the directed migration of ECs by maintaining VEGFR-2 levels at their surface.
Collapse
Affiliation(s)
- Kei Miyano
- Department of Biochemistry, Kawasaki Medical School, Okayama, Japan
| | | | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, Okayama, Japan
| | - Chikage Kawai
- Department of Biochemistry, Kawasaki Medical School, Okayama, Japan
| | - Mizuho Kajikawa
- Laboratory of Microbiology, Showa Pharmaceutical University, Tokyo, Japan
| | - Takuya Kiyohara
- Department of Cerebrovascular Disease and Neurology, Hakujyuji Hospital, Fukuoka, Japan
| | - Minoru Tamura
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, Ehime, Japan
| | - Masahiko Taura
- Department of Otorhinolaryngology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | | |
Collapse
|
5
|
Bajkowska K, Sumardika IW, Tomonobu N, Chen Y, Yamamoto KI, Kinoshita R, Murata H, Gede Yoni Komalasari NL, Jiang F, Yamauchi A, Winarsa Ruma IM, Kasano-Camones CI, Inoue Y, Sakaguchi M. Neuroplastinβ-mediated upregulation of solute carrier family 22 member 18 antisense (SLC22A18AS) plays a crucial role in the epithelial-mesenchymal transition, leading to lung cancer cells' enhanced motility. Biochem Biophys Rep 2020; 22:100768. [PMID: 32490214 PMCID: PMC7261704 DOI: 10.1016/j.bbrep.2020.100768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/13/2020] [Accepted: 05/04/2020] [Indexed: 01/01/2023] Open
Abstract
Our recent study revealed an important role of the neuroplastin (NPTN)β downstream signal in lung cancer dissemination in the lung. The molecular mechanism of the signal pathway downstream of NPTNβ is a serial activation of the key molecules we identified: tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2) adaptor, nuclear factor (NF)IA/NFIB heterodimer transcription factor, and SAM pointed-domain containing ETS transcription factor (SPDEF). The question of how dissemination is controlled by SPDEF under the activated NPTNβ has not been answered. Here, we show that the NPTNβ-SPDEF-mediated induction of solute carrier family 22 member 18 antisense (SLC22A18AS) is definitely required for the epithelial-mesenchymal transition (EMT) through the NPTNβ pathway in lung cancer cells. In vitro, the induced EMT is linked to the acquisition of active cellular motility but not growth, and this is correlated with highly disseminative tumor progression in vivo. The publicly available data also show the poor survival of SLC22A18AS-overexpressing lung cancer patients. Taken together, these data highlight a crucial role of SLC22A18AS in lung cancer dissemination, which provides novel input of this molecule to the signal cascade of NPTNβ. Our findings contribute to a better understanding of NPTNβ-mediated lung cancer metastasis.
Collapse
Affiliation(s)
- Karolina Bajkowska
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
- University of Surrey, 11 Osterley Court, London TW7 4PX, England, UK
| | - I. Wayan Sumardika
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
- Faculty of Medicine, Udayana University, Denpasar 80232, Bali, Indonesia
| | - Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Youyi Chen
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
- Department of General Surgery & Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ken-ichi Yamamoto
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Hitoshi Murata
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Ni Luh Gede Yoni Komalasari
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
- Faculty of Medicine, Udayana University, Denpasar 80232, Bali, Indonesia
| | - Fan Jiang
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima, Kurashiki-shi, Okayama 701-0192, Japan
| | | | - Carlos Ichiro Kasano-Camones
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-8515, Japan
| | - Yusuke Inoue
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-8515, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| |
Collapse
|
6
|
Goldblatt J, Lawrenson RA, Muir L, Dattani S, Hoffland A, Tsuchiya T, Kanegasaki S, Sriskandan S, Pease JE. A Requirement for Neutrophil Glycosaminoglycans in Chemokine:Receptor Interactions Is Revealed by the Streptococcal Protease SpyCEP. THE JOURNAL OF IMMUNOLOGY 2019; 202:3246-3255. [PMID: 31010851 PMCID: PMC6526389 DOI: 10.4049/jimmunol.1801688] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/21/2019] [Indexed: 12/17/2022]
Abstract
SpyCEP-cleaved CXCL8 is unable to bind and activate CXCL8 receptors. Neutrophil glycosaminoglycans are required for migration along a CXCL8 gradient.
To evade the immune system, the lethal human pathogen Streptococcus pyogenes produces SpyCEP, an enzyme that cleaves the C-terminal α-helix of CXCL8, resulting in markedly impaired recruitment of neutrophils to sites of invasive infection. The basis for chemokine inactivation by SpyCEP is, however, poorly understood, as the core domain of CXCL8 known to interact with CXCL8 receptors is unaffected by enzymatic cleavage. We examined the in vitro migration of human neutrophils and observed that their ability to efficiently navigate a CXCL8 gradient was compromised following CXCL8 cleavage by SpyCEP. SpyCEP-mediated cleavage of CXCL8 also impaired CXCL8-induced migration of transfectants expressing the human chemokine receptors CXCR1 or CXCR2. Despite possessing an intact N terminus and preserved disulfide bonds, SpyCEP-cleaved CXCL8 had impaired binding to both CXCR1 and CXCR2, pointing to a requirement for the C-terminal α-helix. SpyCEP-cleaved CXCL8 had similarly impaired binding to the glycosaminoglycan heparin. Enzymatic removal of neutrophil glycosaminoglycans was observed to ablate neutrophil navigation of a CXCL8 gradient, whereas navigation of an fMLF gradient remained largely intact. We conclude, therefore, that SpyCEP cleavage of CXCL8 results in chemokine inactivation because of a requirement for glycosaminoglycan binding in productive chemokine:receptor interactions. This may inform strategies to inhibit the activity of SpyCEP, but may also influence future approaches to inhibit unwanted chemokine-induced inflammation.
Collapse
Affiliation(s)
- Jennifer Goldblatt
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom.,Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | | | - Luke Muir
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - Saloni Dattani
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ashley Hoffland
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom.,Asthma U.K. Centre in Allergic Mechanisms of Asthma, London, United Kingdom; and
| | - Tomoko Tsuchiya
- Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Shiro Kanegasaki
- Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Shiranee Sriskandan
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom;
| | - James E Pease
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom; .,Asthma U.K. Centre in Allergic Mechanisms of Asthma, London, United Kingdom; and
| |
Collapse
|
7
|
Dipeptidyl Peptidase 4 Inhibitors Reduce Hepatocellular Carcinoma by Activating Lymphocyte Chemotaxis in Mice. Cell Mol Gastroenterol Hepatol 2018; 7:115-134. [PMID: 30510994 PMCID: PMC6260362 DOI: 10.1016/j.jcmgh.2018.08.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS CD26, a multifunctional transmembrane glycoprotein, is expressed in various cancers and functions as dipeptidyl peptidase 4 (DPP4). We investigated whether CD26 expression is associated with hepatocellular carcinoma (HCC) progression and whether DPP4 inhibitors exert antitumor effects against HCC. METHODS CD26 expression was examined in 41 surgically resected HCC specimens. The effects of DPP4 inhibitors on HCC were examined by using HCC cell lines (Huh-7 and Li-7), xenograft tumors in nude mice, and a nonalcoholic steatohepatitis-related HCC mouse model. RESULTS CD26 expression in HCC specimens was associated with increased serum DPP4 activity, as well as a more advanced stage, less tumor immunity, and poorer prognosis in HCC patients. The HCC cell lines and xenograft tumors exhibited CD26 expression and DPP4 activity. The DPP4 inhibitors did not exhibit antitumor effects in vitro, but natural killer (NK) and/or T-cell tumor accumulation suppressed growth of xenograft tumor and HCC in vivo. The antitumor effects of DPP4 inhibitors were abolished by the depletion of NK cells or the neutralization of CXCR3, a chemokine receptor on NK cells. EZ-TAXIScan, an optical horizontal chemotaxis apparatus, identified enhanced NK and T-cell chemotaxis by DPP4 inhibitors ex vivo in the presence of Huh-7 cells and the chemokine CXCL10, which binds to CXCR3. The DPP4 inhibitors prevented the biologically active form of CXCL10 from being truncated by Huh-7 cell DPP4 activity. DPP4 inhibitors also suppressed tumor angiogenesis. CONCLUSIONS These results provide a rationale for verifying whether DPP4 inhibitors clinically inhibit the progression of HCC or augment the antitumor effects of molecular-targeting drugs or immunotherapies against HCC.
Collapse
Key Words
- CCK-8, Cell Counting Kit 8
- CD26
- CXCL10
- DM, diabetes mellitus
- DPP4, dipeptidyl peptidase 4
- FBS, fetal bovine serum
- HCC, hepatocellular carcinoma
- HCV, hepatitis C virus
- HPLC, high-performance liquid chromatography
- IC50, inhibitory concentration of 50%
- Ig, immunoglobulin
- LDH, lactate dehydrogenase
- MICA, MHC class I polypeptide-related sequence A
- NAFLD, nonalcoholic fatty liver disease
- NASH, nonalcoholic steatohepatitis
- NK Cell
- NK, natural killer
- PBMC, peripheral blood mononuclear cell
- PBS, phosphate-buffered saline
- PTH, phenylthiohydantoin
- SDS-PAGE, sodium dodecyl sulfate–polyacrylamide gel electrophoresis
- T Cell
- TAXIScan
- Tumor Immunity
- anti-ASGM, anti-asialo GM1 antisera
Collapse
|
8
|
CXCL4/Platelet Factor 4 is an agonist of CCR1 and drives human monocyte migration. Sci Rep 2018; 8:9466. [PMID: 29930254 PMCID: PMC6013489 DOI: 10.1038/s41598-018-27710-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/05/2018] [Indexed: 02/07/2023] Open
Abstract
Activated platelets release micromolar concentrations of the chemokine CXCL4/Platelet Factor-4. Deposition of CXCL4 onto the vascular endothelium is involved in atherosclerosis, facilitating monocyte arrest and recruitment by an as yet, unidentified receptor. Here, we demonstrate that CXCL4 drives chemotaxis of the monocytic cell line THP-1. Migration and intracellular calcium responses induced by CXCL4 were pertussis toxin-sensitive, implicating a GPCR in signal transduction. Cell treatment with chondroitinase ABC ablated migration, suggesting that cis presentation of CXCL4 by cell surface glycosaminoglycans to a GPCR is required. Although CXCR3 has been previously described as a CXCL4 receptor, THP-1 cells were unresponsive to CXCR3 ligands and CXCL4-induced migration was insensitive to a CXCR3 antagonist, suggesting that an alternative receptor is involved. Interrogating CC-class chemokine receptor transfectants, we unexpectedly found that CXCL4 could induce the migration of CCR1-expressing cells and also induce CCR1 endocytosis. Extending our findings to primary human monocytes, we observed that CXCL4 induced CCR1 endocytosis and could induce monocyte chemotaxis in a CCR1 antagonist-sensitive manner. Collectively, our data identify CCR1 as a previously elusive monocyte CXCL4 receptor and suggest that CCR1 may play a role in inflammation where the release of CXCL4 is implicated.
Collapse
|
9
|
Tsuchiya T, Shiraishi K, Nakagawa K, Kim JR, Kanegasaki S. Identification of the active portion of the CCL3 derivative reported to induce antitumor abscopal effect. Clin Transl Radiat Oncol 2018; 10:7-12. [PMID: 29928700 PMCID: PMC6008634 DOI: 10.1016/j.ctro.2018.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 01/04/2023] Open
Abstract
Injected HSP70 and a partial peptide of a CCL3 variant elicit tumor growth inhibition. The peptide also enhances tumor growth inhibition after local irradiation. The sequence of the peptide corresponds to the beta sheet region of the valiant. Chemotactic-inducing activity and tumor grow inhibition are independent phenomena. The results will help to open the way for therapeutic application of like peptides.
Background and purpose Intravenous administration of a single amino acid-substituted chemokine CCL3 derivative named eMIP elicits the abscopal effect (an effect distal to the target), after local irradiation at a tumor-bearing site. To distinguish the active portion of eMIP, we tested the antitumor activity of chemically synthesized partial peptides of eMIP. Synthetic peptide has various advantages in its clinical application. Material and methods Colon26 adenocarcinoma cells were implanted subcutaneously in the right and left flanks of mice. eMIP, CCL3 or any of synthesized peptides was administered intravenously, either after irradiating the right flank. The effect was evaluated by tumor-growth inhibition. Results Q/C peptide, a synthetic peptide of amino acids 22–51 of eMIP has no chemotaxis-inducing ability but yet enhanced tumor growth inhibition at the non-irradiated sites, recapitulating the effect of eMIP with local irradiation. Co-administration of this peptide and HSP70 also inhibited tumor growth. Conclusions Q/C peptide maps to the eMIP β-sheet: 3 adjacent anti-parallel strands connected by the β-hairpins, is the active portion of eMIP necessary for an immunomodulatory antitumor effect. This experimental reduction furthers our understanding of the underlying mechanism of the abscopal effect. The data will open the way for therapeutic application of like peptides.
Collapse
Affiliation(s)
- Tomoko Tsuchiya
- Research Center for Medical Science, Yeungnam University, Republic of Korea.,Central Lab, Effector Cell Institute Inc., Japan.,College of Medicine, Yeungnam University, Republic of Korea
| | - Kenshiro Shiraishi
- Department of Radiology, University Hospital, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Keiichi Nakagawa
- Department of Radiology, University Hospital, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Jae-Ryong Kim
- Research Center for Medical Science, Yeungnam University, Republic of Korea.,College of Medicine, Yeungnam University, Republic of Korea
| | - Shiro Kanegasaki
- Research Center for Medical Science, Yeungnam University, Republic of Korea.,Central Lab, Effector Cell Institute Inc., Japan.,College of Medicine, Yeungnam University, Republic of Korea
| |
Collapse
|
10
|
Abstract
Leukocyte-adhesion deficiency-1 is a recessively inherited disorder associated with recurrent bacterial infections, severe periodontitis, peripheral leukocytosis, and impaired wound healing. We diagnosed moderate-type leukocyte-adhesion deficiency-1 in a 7-year-old girl who developed a necrotizing ulcer after Bacillus Calmette-Guerin vaccination. The patient showed moderate expression of CD18 in neutrophils with a homozygous splice mutation with c.41_c.58+2dup20 of ITGB2 and experienced recurrent severe infections complicated with systemic lupus erythematosus. She received hematopoietic stem cell transplantation from a matched elder brother with heterozygous mutation of ITGB2, and has since remained free of infection and systemic lupus erythematosus symptoms without immunosuppression therapy.
Collapse
|
11
|
Yamauchi A, Yamamura M, Katase N, Itadani M, Okada N, Kobiki K, Nakamura M, Yamaguchi Y, Kuribayashi F. Evaluation of pancreatic cancer cell migration with multiple parameters in vitro by using an optical real-time cell mobility assay device. BMC Cancer 2017; 17:234. [PMID: 28359316 PMCID: PMC5374612 DOI: 10.1186/s12885-017-3218-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/22/2017] [Indexed: 11/26/2022] Open
Abstract
Background Migration of cancer cell correlates with distant metastasis and local invasion, which are good targets for cancer treatment. An optically accessible device “TAXIScan” was developed, which provides considerably more information regarding the cellular dynamics and less quantity of samples than do the existing methods. Here, we report the establishment of a system to analyze the nature of pancreatic cancer cells using TAXIScan and we evaluated lysophosphatidic acid (LPA)-elicited pancreatic cell migration. Methods Pancreatic cancer cell lines, BxPC3, PANC-1, AsPC1, and MIAPaCa-2, were analyzed for adhesion as well as migration towards LPA by TAXIScan using parameters such as velocity and directionality or for the number of migrated cells by the Boyden chamber methods. To confirm that the migration was initiated by LPA, the expression of LPA receptors and activation of intracellular signal transductions were examined by quantitative reverse transcriptase polymerase reaction and western blotting. Results Scaffold coating was necessary for the adhesion of pancreatic cancer cells, and collagen I and Matrigel were found to be good scaffolds. BxPC3 and PANC-1 cells clearly migrated towards the concentration gradient formed by injecting 1 μL LPA, which was abrogated by pre-treatment with LPA inhibitor, Ki16425 (IC50 for the directionality ≈ 1.86 μM). The LPA dependent migration was further confirmed by mRNA and protein expression of LPA receptors as well as phosphorylation of signaling molecules. LPA1 mRNA was highest among the 6 receptors, and LPA1, LPA2 and LPA3 proteins were detected in BxPC3 and PANC-1 cells. Phosphorylation of Akt (Thr308 and Ser473) and p42/44MAPK in BxPC3 and PANC-1 cells was observed after LPA stimulation, which was clearly inhibited by pre-treatment with a compound Ki16425. Conclusions We established a novel pancreatic cancer cell migration assay system using TAXIScan. This assay device provides multiple information on migrating cells simultaneously, such as their morphology, directionality, and velocity, with a small volume of sample and can be a powerful tool for analyzing the nature of cancer cells and for identifying new factors that affect cell functions. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3218-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| | - Masahiro Yamamura
- Department of Clinical Oncology, Kawasaki Medical School, Okayama, Japan
| | - Naoki Katase
- Department of Molecular and Developmental Biology, Kawasaki Medical School, Okayama, Japan
| | - Masumi Itadani
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Naoko Okada
- Department of Clinical Oncology, Kawasaki Medical School, Okayama, Japan
| | - Kayoko Kobiki
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Futoshi Kuribayashi
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| |
Collapse
|
12
|
Wu J, Hillier C, Komenda P, Lobato de Faria R, Levin D, Zhang M, Lin F. A Microfluidic Platform for Evaluating Neutrophil Chemotaxis Induced by Sputum from COPD Patients. PLoS One 2015; 10:e0126523. [PMID: 25961597 PMCID: PMC4427402 DOI: 10.1371/journal.pone.0126523] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/03/2015] [Indexed: 11/20/2022] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a common lung disease characterized by breathing difficulty as a consequence of narrowed airways. Previous studies have shown that COPD is correlated with neutrophil infiltration into the airways through chemotactic migration. However, whether neutrophil chemotaxis can be used to characterize and diagnose COPD is not well established. In the present study, we developed a microfluidic platform for evaluating neutrophil chemotaxis to sputum samples from COPD patients. Our results show increased neutrophil chemotaxis to COPD sputum compared to control sputum from healthy individuals. The level of COPD sputum induced neutrophil chemotaxis was correlated with the patient's spirometry data. The cell morphology of neutrophils in a COPD sputum gradient is similar to the morphology displayed by neutrophils exposed to an IL-8 gradient, but not a fMLP gradient. In competing gradients of COPD sputum and fMLP, neutrophils chemotaxis and cell morphology are dominated by fMLP.
Collapse
Affiliation(s)
- Jiandong Wu
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Craig Hillier
- Seven Oaks General Hospital, Winnipeg, MB, R2V 3M3, Canada
| | - Paul Komenda
- Seven Oaks General Hospital, Winnipeg, MB, R2V 3M3, Canada
| | | | - David Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Michael Zhang
- Seven Oaks General Hospital, Winnipeg, MB, R2V 3M3, Canada
- Rizhao Hospital of Traditional Chinese Medicine, Rizhao, China
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB, R3E 0T5, Canada
| |
Collapse
|
13
|
Increase in Activated Treg in TIL in Lung Cancer and In Vitro Depletion of Treg by ADCC Using an Antihuman CCR4 mAb (KM2760). J Thorac Oncol 2015; 10:74-83. [DOI: 10.1097/jto.0000000000000364] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Wu CY, Lin MW, Wu DC, Huang YB, Huang HT, Chen CL. The role of phosphoinositide-regulated actin reorganization in chemotaxis and cell migration. Br J Pharmacol 2014; 171:5541-54. [PMID: 25420930 DOI: 10.1111/bph.12777] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 04/15/2014] [Accepted: 05/07/2014] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Reorganization of the actin cytoskeleton is essential for cell motility and chemotaxis. Actin-binding proteins (ABPs) and membrane lipids, especially phosphoinositides PI(4,5)P2 and PI(3,4,5)P3 are involved in the regulation of this reorganization. At least 15 ABPs have been reported to interact with, or regulated by phosphoinositides (PIPs) whose synthesis is regulated by extracellular signals. Recent studies have uncovered several parallel intracellular signalling pathways that crosstalk in chemotaxing cells. Here, we review the roles of ABPs and phosphoinositides in chemotaxis and cell migration. LINKED ARTICLES This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24.
Collapse
Affiliation(s)
- C-Y Wu
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung, Taiwan; Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|