1
|
Almonte AA, Cavic G, Carroll CSE, Neeman T, Fahrer AM. Early T Cell Infiltration Correlates with Anti-CTLA4 Treatment Response in Murine Cancer Models. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1858-1867. [PMID: 37930122 DOI: 10.4049/jimmunol.2300040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Immune checkpoint inhibitor (ICI) Abs are a revolutionary class of cancer treatment, but only ∼30% of patients receive a lasting benefit from therapy. Preclinical studies using animals from the same genetic backgrounds, challenged with the same cancer models, also show nonuniform responses. Most mouse studies that have evaluated tumor-infiltrating leukocytes after ICI therapy cannot directly correlate their findings with treatment outcomes, because terminal methods were used to acquire immune infiltrate data. In the present study, we used fine-needle aspiration (a nonterminal sampling method) to collect multiple aspirates over several days from s.c. implanted P815, CT26, and 4T1 mouse cancer models treated with ICI Abs. These aspirates were then analyzed with flow cytometry to directly correlate tumor-infiltrating leukocyte populations with treatment success. We found that the P815 and CT26 models respond well to anti-CTLA4 therapies. Among P815-challenged animals, mice that regressed following anti-CTLA4 treatment showed significant increases in CD8+ T cells on days 3, 5, and 7 and in CD4+ T cells on days 5 and 7 and a decrease in macrophages and monocytes on days 3, 5, and 7 after treatment. Similar results were obtained in the CT26 model on day 11 posttreatment. Our study is the first, to our knowledge, to directly correlate early tumor infiltration of T cells with anti-CTLA4 treatment success, thus providing a mechanistic clue toward understanding why alloidentical mice challenged with identical tumors do not respond uniformly to ICI therapies.
Collapse
Affiliation(s)
- Andrew A Almonte
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australia
| | - George Cavic
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australia
| | | | - Teresa Neeman
- Biological Data Science Institute, The Australian National University, Canberra, Australia
| | - Aude M Fahrer
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australia
- Faculty of Science and Technology, University of Canberra, Canberra, Australia
| |
Collapse
|
2
|
Carroll CSE, Andrew ER, Malik L, Elliott KF, Brennan M, Meyer J, Hintze A, Almonte AA, Lappin C, MacPherson P, Schulte KM, Dahlstrom JE, Tamhane R, Neeman T, Herbert EW, Orange M, Yip D, Allavena R, Fahrer AM. Simple and effective bacterial-based intratumoral cancer immunotherapy. J Immunother Cancer 2021; 9:jitc-2021-002688. [PMID: 34531247 PMCID: PMC8449973 DOI: 10.1136/jitc-2021-002688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND We describe intratumoral injection of a slow-release emulsion of killed mycobacteria (complete Freund's adjuvant (CFA)) in three preclinical species and in human cancer patients. METHODS Efficacy and safety were tested in mammary tumors in mice, in mastocytomas in mice and dogs, and in equine melanomas. In mice, survival, tumor growth, and tumor infiltration by six immune cell subsets (by flow cytometry) were investigated and analyzed using Cox proportional hazards, a random slopes model, and a full factorial model, respectively. Tumor growth and histology were investigated in dogs and horses, as well as survival and tumor immunohistochemistry in dogs. Tumor biopsies were taken from human cancer patients on day 5 (all patients) and day 28 (some patients) of treatment and analyzed by histology. CT scans are provided from one patient. RESULTS Significantly extended survival was observed in mouse P815 and 4T1 tumor models. Complete tumor regressions were observed in all three non-human species (6/186 (3%) of mouse mastocytomas; 3/14 (21%) of canine mastocytomas and 2/11 (18%) of equine melanomas). Evidence of systemic immune responses (regression of non-injected metastases) was also observed. Analysis of immune cells infiltrating mastocytoma tumors in mice showed that early neutrophil infiltration was predictive of treatment benefit. Analysis of the site of mastocytoma regression in dogs weeks or months after treatment demonstrated increased B and T cell infiltrates. Thus, activation of the innate immune system alone may be sufficient for regression of some injected tumors, followed by activation of the acquired immune system which can mediate regression of non-injected metastases. Finally, we report on the use of CFA in 12 human cancer patients. Treatment was well tolerated. CT scans showing tumor regression in a patient with late-stage renal cancer are provided. CONCLUSION Our data demonstrate that intratumoral injection of CFA has major antitumor effects in a proportion of treated animals and is safe for use in human cancer patients. Further trials in human cancer patients are therefore warranted. Our novel treatment provides a simple and inexpensive cancer immunotherapy, immediately applicable to a wide range of solid tumors, and is suitable to patients in developing countries and advanced care settings.
Collapse
Affiliation(s)
- Christina S E Carroll
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Erin R Andrew
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Laeeq Malik
- Department of Medical Oncology, Canberra Hospital, Canberra, Australian Capital Territory, Australia.,Medical School, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Kathryn F Elliott
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Moira Brennan
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - James Meyer
- Adelaide Plains Equine Clinic, Gawler, South Australia, Australia
| | | | - Andrew A Almonte
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Cassandra Lappin
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Philip MacPherson
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Klaus-Martin Schulte
- Medical School, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jane E Dahlstrom
- Medical School, Australian National University, Canberra, Australian Capital Territory, Australia.,ACT Pathology, Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Rohit Tamhane
- Canberra Imaging Group, Canberra, Australian Capital Territory, Australia
| | - Teresa Neeman
- Biological Data Science Institute, Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | | - Desmond Yip
- Department of Medical Oncology, Canberra Hospital, Canberra, Australian Capital Territory, Australia.,Medical School, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Rachel Allavena
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Aude M Fahrer
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
3
|
Sitnikova SI, Munnings-Tomes S, Galvani E, Kentner S, Mulgrew K, Rands C, España Agustí J, Zhang T, Ilieva KM, Rosignoli G, Ghadially H, Robinson MJ, Slidel T, Wilkinson RW, Dovedi SJ. Novel non-terminal tumor sampling procedure using fine needle aspiration supports immuno-oncology biomarker discovery in preclinical mouse models. J Immunother Cancer 2021; 9:jitc-2021-002894. [PMID: 34145033 PMCID: PMC8215240 DOI: 10.1136/jitc-2021-002894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background Immuno-oncology therapies are now part of the standard of care for cancer in many indications. However, durable objective responses remain limited to a subset of patients. As such, there is a critical need to identify biomarkers that can predict or enrich for treatment response. So far, the majority of putative biomarkers consist of features of the tumor microenvironment (TME). However, in preclinical mouse models, the collection of tumor tissue for this type of analysis is a terminal procedure, obviating the ability to directly link potential biomarkers to long-term treatment outcomes. Methods To address this, we developed and validated a novel non-terminal tumor sampling method to enable biopsy of the TME in mouse models based on fine needle aspiration. Results We show that this technique enables repeated in-life sampling of subcutaneous flank tumors and yields sufficient material to support downstream analyses of tumor-infiltrating immune cells using methods such as flow cytometry and single-cell transcriptomics. Moreover, using this technique we demonstrate that we can link TME biomarkers to treatment response outcomes, which is not possible using the current method of terminal tumor sampling. Conclusion Thus, this minimally invasive technique is an important refinement for the pharmacodynamic analysis of the TME facilitating paired evaluation of treatment response biomarkers with outcomes and reducing the number of animals used in preclinical research.
Collapse
|
4
|
Yates JWT, Byrne H, Chapman SC, Chen T, Cucurull-Sanchez L, Delgado-SanMartin J, Di Veroli G, Dovedi SJ, Dunlop C, Jena R, Jodrell D, Martin E, Mercier F, Ramos-Montoya A, Struemper H, Vicini P. Opportunities for Quantitative Translational Modeling in Oncology. Clin Pharmacol Ther 2020; 108:447-457. [PMID: 32569424 DOI: 10.1002/cpt.1963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022]
Abstract
A 2-day meeting was held by members of the UK Quantitative Systems Pharmacology Network () in November 2018 on the topic of Translational Challenges in Oncology. Participants from a wide range of backgrounds were invited to discuss current and emerging modeling applications in nonclinical and clinical drug development, and to identify areas for improvement. This resulting perspective explores opportunities for impactful quantitative pharmacology approaches. Four key themes arose from the presentations and discussions that were held, leading to the following recommendations: Evaluate the predictivity and reproducibility of animal cancer models through precompetitive collaboration. Apply mechanism of action (MoA) based mechanistic models derived from nonclinical data to clinical trial data. Apply MoA reflective models across trial data sets to more robustly quantify the natural history of disease and response to differing interventions. Quantify more robustly the dose and concentration dependence of adverse events through mathematical modelling techniques and modified trial design.
Collapse
Affiliation(s)
| | | | | | - Tao Chen
- University of Surrey, Surrey, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Lückerath K, Wei L, Fendler WP, Evans-Axelsson S, Stuparu AD, Slavik R, Mona CE, Calais J, Rettig M, Reiter RE, Herrmann K, Radu CG, Czernin J, Eiber M. Preclinical evaluation of PSMA expression in response to androgen receptor blockade for theranostics in prostate cancer. EJNMMI Res 2018; 8:96. [PMID: 30374743 PMCID: PMC6206308 DOI: 10.1186/s13550-018-0451-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/18/2018] [Indexed: 01/26/2023] Open
Abstract
Background Prostate-specific membrane antigen (PSMA)-directed radioligand therapy (RLT) is a promising yet not curative approach in castration-resistant (CR) prostate cancer (PC). Rational combination therapies may improve treatment efficacy. Here, we explored the effect of androgen receptor blockade (ARB) on PSMA expression visualized by PET and its potential additive effect when combined with 177Lu-PSMA RLT in a mouse model of prostate cancer. Methods Mice bearing human CRPC (C4-2 cells) xenografts were treated with 10 mg/kg enzalutamide (ENZ), with 50 mg/kg bicalutamide (BIC), or vehicle (control) for 21 days. PSMA expression was evaluated by 68Ga-PSMA11 PET/CT and quantified by flow cytometry of tumor fine needle aspirations before treatment and on days 23, 29, 34, and 39 post-therapy induction. For the RLT combination approach, mice bearing C4-2 tumors were treated with 10 mg/kg ENZ or vehicle for 21 days before receiving either 15 MBq (84 GBq/μmol) 177Lu-PSMA617 or vehicle. DNA damage was assessed as phospho-γH2A.X foci in tumor biopsies. Reduction of tumor volume on CT and survival were used as study endpoints. Results Tumor growth was delayed by ARB while 68Ga-PSMA11 uptake increased up to 2.3-fold over time when compared to controls. ABR-induced upregulation of PSMA expression was confirmed by flow cytometry. Phospho-γH2A.X levels increased 1.8- and 3.4-fold at 48 h in response to single treatment ENZ or RLT and ENZ+RLT, respectively. Despite significantly greater DNA damage and persistent increase of PSMA expression at the time of RLT, no additional tumor growth retardation was observed in the ENZ+RLT group (vs. RLT only, p = 0.372 at day 81). Median survival did not improve significantly when ENZ was combined with RLT. Conclusion ARB-mediated increases in PSMA expression in PC xenografts were evident by 68Ga-PSMA11 PET imaging and flow cytometry. 177Lu-PSMA617 effectively decreased C4-2 tumor size. However, while pre-treatment with ARB increased DNA damage significantly, it did not result in synergistic effects when combined with RLT. Electronic supplementary material The online version of this article (10.1186/s13550-018-0451-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katharina Lückerath
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA. .,University of California at Los Angeles, Ahmanson Translational Imaging Division, 10833 Le Conte Ave, 200 Medical Plaza, Ste. B114-61, Los Angeles, CA, 90095-7370, USA.
| | - Liu Wei
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, Universitätsklinikum Essen, Essen, Germany
| | | | - Andreea D Stuparu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Roger Slavik
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Christine E Mona
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jeremie Calais
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Matthew Rettig
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Robert E Reiter
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ken Herrmann
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Department of Nuclear Medicine, Universitätsklinikum Essen, Essen, Germany
| | - Caius G Radu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Johannes Czernin
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Matthias Eiber
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|