1
|
Hydroxymethylation profile of cell-free DNA is a biomarker for early colorectal cancer. Sci Rep 2022; 12:16566. [PMID: 36195648 PMCID: PMC9532421 DOI: 10.1038/s41598-022-20975-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Early detection of cancer will improve survival rates. The blood biomarker 5-hydroxymethylcytosine has been shown to discriminate cancer. In a large covariate-controlled study of over two thousand individual blood samples, we created, tested and explored the properties of a 5-hydroxymethylcytosine-based classifier to detect colorectal cancer (CRC). In an independent validation sample set, the classifier discriminated CRC samples from controls with an area under the receiver operating characteristic curve (AUC) of 90% (95% CI [87, 93]). Sensitivity was 55% at 95% specificity. Performance was similar for early stage 1 (AUC 89%; 95% CI [83, 94]) and late stage 4 CRC (AUC 94%; 95% CI [89, 98]). The classifier could detect CRC even when the proportion of tumor DNA in blood was undetectable by other methods. Expanding the classifier to include information about cell-free DNA fragment size and abundance across the genome led to gains in sensitivity (63% at 95% specificity), with similar overall performance (AUC 91%; 95% CI [89, 94]). We confirm that 5-hydroxymethylcytosine can be used to detect CRC, even in early-stage disease. Therefore, the inclusion of 5-hydroxymethylcytosine in multianalyte testing could improve sensitivity for the detection of early-stage cancer.
Collapse
|
2
|
Gosselt HR, Griffioen PH, van Zelst BD, Oosterom N, de Jonge R, Heil SG. Global DNA (hydroxy)methylation is stable over time under several storage conditions and temperatures. Epigenetics 2020; 16:45-53. [PMID: 32614650 PMCID: PMC7889142 DOI: 10.1080/15592294.2020.1786318] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background: Epigenetic markers are often quantified and related to disease in stored samples. While, effects of storage on stability of these markers have not been thoroughly examined. In this longitudinal study, we investigated the influence of storage time, material, temperature, and freeze-thaw cycles on stability of global DNA (hydroxy)methylation. Methods: EDTA blood was collected from 90 individuals. Blood (n = 30, group 1) and extracted DNA (n = 30, group 2) were stored at 4°C, −20°C and −80°C for 0, 1 (endpoint blood 4°C), 6, 12 or 18 months. Additionally, freeze-thaw cycles of blood and DNA samples (n = 30, group 3) were performed over three days. Global DNA methylation and hydroxymethylation (mean ± SD) were quantified using liquid chromatography–electrospray ionization–tandem mass spectrometry (LC-ESI-MS/MS) with between-run precision of 2.8% (methylation) and 6.3% (hydroxymethylation). Effects on stability were assessed using linear mixed models. Results: global DNA methylation was stable over 18 months in blood at −20°C and −80°C and DNA at 4°C and −80°C. However, at 18 months DNA methylation from DNA stored at −20°C relatively decreased −6.1% compared to baseline. Global DNA hydroxymethylation was more stable in DNA samples compared to blood, independent of temperature (p = 0.0131). Stability of global DNA methylation and hydroxymethylation was not affected up to three freeze – thaw cycles. Conclusion: Global DNA methylation and hydroxymethylation stored as blood and DNA can be used for epigenetic studies. The relevance of small differences occuring during storage depend on the expected effect size and research question.
Collapse
Affiliation(s)
- Helen R Gosselt
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam , Rotterdam, The Netherlands.,Department of Clinical Chemistry, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam , Amsterdam, The Netherlands
| | - Pieter H Griffioen
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam , Rotterdam, The Netherlands
| | - Bertrand D van Zelst
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam , Rotterdam, The Netherlands
| | - Natanja Oosterom
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam , Rotterdam, The Netherlands
| | - Robert de Jonge
- Department of Clinical Chemistry, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, Vrije Universiteit Amsterdam , Amsterdam, The Netherlands
| | - Sandra G Heil
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam , Rotterdam, The Netherlands
| |
Collapse
|
3
|
Carr AC, Lykkesfeldt J. Discrepancies in global vitamin C recommendations: a review of RDA criteria and underlying health perspectives. Crit Rev Food Sci Nutr 2020; 61:742-755. [PMID: 32223303 DOI: 10.1080/10408398.2020.1744513] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The concept of a 'recommended dietary allowance' (RDA) and similar terms describing the daily intake of essential nutrients recommended for healthy individuals is widely used by various health authorities around the world. For vitamin C, however, there remain significant discrepancies in the criteria used to establish dietary recommendations and consequently, global recommendations for daily vitamin C intake vary by more than five fold. While it appears that the scientific data underlying the recommendations are more or less the same, the interpretation differs considerably. Moreover, although a number of the assumptions used in e.g. the body pool estimates of the 1960s and 1970s have later been proven wrong and give rise to significant underestimations, these data are still used as the main support of several recommendations. Aspects that modify vitamin C requirements, such as gender, age, pregnancy, lactation, and smoking, have been taken into consideration by many but not all regulatory authorities, and are thus subject of debate. In contrast, body weight, a significant predictor of vitamin C status and requirement, has not been taken into consideration with respect to vitamin C recommendations, even in the face of the looming global obesity pandemic. The present review examines the discrepancies in vitamin C dietary recommendations of international authorities and critically discusses representative examples of criteria and the underlying health perspectives used to derive current recommended intakes of vitamin C. New biological signatures of vitamin C nutriture are also explored with regard to their potential use for future updates of dietary recommendations.
Collapse
Affiliation(s)
- Anitra C Carr
- Nutrition in Medicine Research Group, University of Otago, Christchurch, New Zealand
| | - Jens Lykkesfeldt
- Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Xie W, Zhou H, Han Q, Sun T, Nie C, Hong J, Wei R, Leonteva A, Han X, Wang J, Du X, Zhu L, Zhao Y, Tian W, Xue Y. Relationship between DLEC1 and PBX3 promoter methylation and the risk and prognosis of gastric cancer in peripheral blood leukocytes. J Cancer Res Clin Oncol 2020; 146:1115-1124. [PMID: 32144534 DOI: 10.1007/s00432-020-03171-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/27/2020] [Indexed: 01/09/2023]
Abstract
PURPOSE Aberrant DNA methylation could regulate the expression of tumor suppressor gene DLEC1 and oncogene PBX3 and was related to the occurrence and prognosis of gastric cancer (GC). In this study, the associations between DLEC1 and PBX3 promoter methylation in peripheral blood leukocytes (PBLs) and the risk and prognosis of GC were investigated. METHODS The methylation status of DLEC1 and PBX3 promoter in PBLs of 368 GC cases and 382 controls was detected by the methylation-sensitive high-resolution melting (MS-HRM) method. Logistic and Cox regression were adopted to analyze the associations of DLEC1 and PBX3 methylation with GC risk and prognosis, respectively. Confounding biases were controlled by propensity score (PS). RESULTS Compared with negative methylation (Nm), DLEC1-positive methylation (Pm) was associated with increased GC risk in PS (OR 2.083, 95% CI 1.220-3.558, P = 0.007), but PBX3 Pm was not associated with GC risk. In the elderly group (≥ 60 years), DLEC1 Pm was associated with increased GC risk (OR 2.951, 95% CI 1.426-6.104, P = 0.004). The combined effects between DLEC1 methylation and consumption of dairy products, fried food intake and Helicobacter pylori (H. pylori) infection on GC risk were discovered (ORc 3.461, 95% CI 1.847-6.486, P < 0.001, ORc 3.246, 95% CI 1.708-6.170, P < 0.001 and ORc 2.964, 95% CI 1.690-5.197, P < 0.001, respectively). Furthermore, DLEC1 and PBX3 methylation were not associated with GC prognosis. CONCLUSION DLEC1 methylation in PBLs and the combined effects of gene-environment can influence GC risk.
Collapse
Affiliation(s)
- Wenzhen Xie
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Haibo Zhou
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Qian Han
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Tong Sun
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Chuang Nie
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Jia Hong
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Rongrong Wei
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Anastasiia Leonteva
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Xu Han
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Jing Wang
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Xinyu Du
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Lin Zhu
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Yashuang Zhao
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Wenjing Tian
- Department of Epidemiology, College of Public Health, Harbin Medical University, 197 Xuefu Road, Harbin, 150081, Heilongjiang, People's Republic of China.
| | - Yingwei Xue
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang, People's Republic of China.
| |
Collapse
|
5
|
Hohos NM, Smith AK, Kilaru V, Park HJ, Hausman DB, Bailey LB, Lewis RD, Phillips BG, Meagher RB. CD4 + and CD8 + T-Cell-Specific DNA Cytosine Methylation Differences Associated With Obesity. Obesity (Silver Spring) 2018; 26:1312-1321. [PMID: 29956501 PMCID: PMC6107382 DOI: 10.1002/oby.22225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/13/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Lifestyle factors associated with obesity may alter epigenome-regulated gene expression. Most studies examining epigenetic changes in obesity have analyzed DNA 5´-methylcytosine (5mC) in whole blood, representing a weighted average of several distantly related and regulated leukocyte classes. To examine leukocyte-specific differences associated with obesity, a pilot study examining 5mC in three distinct leukocyte types isolated from peripheral blood of women with normal weight and obesity was conducted. METHODS CD4+ T cells, CD8+ T cells, and CD16+ neutrophils were reiteratively isolated from blood, and 5mC levels were measured across >450,000 CG sites. RESULTS Nineteen CG sites were differentially methylated between women with obesity and with normal weight in CD4+ cells, 16 CG sites in CD8+ cells, and 0 CG sites in CD16+ neutrophils (q < 0.05). There were no common differentially methylated sites between the T-cell types. The amount of visceral adipose tissue was strongly associated with the methylation level of 79 CG sites in CD4+ cells, including 4 CG sites in CLSTN1's promoter, which, this study shows, may regulate its expression. CONCLUSIONS The methylomes of various leukocytes respond differently to obesity and levels of visceral adipose tissue. Highly significant differentially methylated sites in CD4+ and CD8+ cells in women with obesity that have apparent biological relevance to obesity were identified.
Collapse
Affiliation(s)
- Natalie M Hohos
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
- Corresponding Author: 120 Green Street, University of Georgia, Athens, GA 30602-7223
| | - Alicia K Smith
- Physciatry and Behavioral Sciences, University of Emory School of Medicine, Atlanta, GA, USA
| | - Varun Kilaru
- Physciatry and Behavioral Sciences, University of Emory School of Medicine, Atlanta, GA, USA
| | - Hea Jin Park
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Dorothy B Hausman
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Lynn B Bailey
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Richard D Lewis
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Bradley G Phillips
- Clinical and Administrative Pharmacy, University of Georgia, Athens, GA, USA
| | | |
Collapse
|