1
|
Saroha P, Patil RS, Rathore AS. Recent advancements in soluble expression of recombinant antibody fragments in microbial host systems. Prep Biochem Biotechnol 2025; 55:131-140. [PMID: 39196757 DOI: 10.1080/10826068.2024.2394446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Recombinant fabs dominate the pharmaceutical pipelines today with microbial host systems continuing to be a major contributor toward their production. Escherichia coli is a versatile host for recombinant protein expression due to its simplicity, affordability, and ability to be cultivated at high cell density. It is particularly suitable for non-glycosylated proteins and small proteins. Despite the aforementioned benefits, the use of E. coli as the host for the synthesis of recombinant antibody fragments often suffers from low yield and reduced activity. In most cases, proteins are expressed as inclusion bodies and need to undergo refolding to achieve their active forms and this refolding step is generally low-yielding. In this article, we review the various approaches that researchers have taken to enhance the production of recombinant antibody fragments in E. coli. Molecular biology-oriented approaches such as cloning, chaperone-mediated folding, and host cell screening as well as process optimization involving examination of process parameters, media, and feeding have been addressed.
Collapse
Affiliation(s)
- Preeti Saroha
- Department of Chemical Engineering, Indian Institute of Technology, New Delhi, India
| | - Rucha S Patil
- Department of Chemical Engineering, Indian Institute of Technology, New Delhi, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
2
|
Romo E, Torres M, Martin-Solano S. Current situation of snakebites envenomation in the Neotropics: Biotechnology, a versatile tool in the production of antivenoms. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.04.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Snakebite envenomation is a neglected tropical disease that affects millions of people around the world with a great impact on health and the economy. Unfortunately, public health programs do not include this kind of disease as a priority in their social programs. Cases of snakebite envenomations in the Neotropics are inaccurate due to inadequate disease management from medical records to the choice of treatments. Victims of snakebite envenomation are primarily found in impoverished agricultural areas where remote conditions limit the availability of antivenom. Antivenom serum is the only Food and Drug Administration-approved treatment used up to date. However, it has several disadvantages in terms of safety and effectiveness. This review provides a comprehensive insight dealing with the current epidemiological status of snakebites in the Neotropics and technologies employed in antivenom production. Also, modern biotechnological tools such as transcriptomic, proteomic, immunogenic, high-density peptide microarray and epitope mapping are highlighted for producing new-generation antivenom sera. These results allow us to propose strategic solutions in the Public Health Sector for managing this disease.
Keywords: antivenom, biotechnology, neglected tropical disease, omics, recombinant antibody.
Collapse
Affiliation(s)
- Elizabeth Romo
- Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - Marbel Torres
- Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador, Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Immunology and Virology Laboratory, Nanoscience and Nanotechnology Center, Universidad de las Fuerzas Armadas, ESPE, Sangolquí, Ecuador
| | - Sarah Martin-Solano
- Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador, Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública, Universidad Central del Ecuador
| |
Collapse
|
3
|
Zanker AA, Stargardt P, Kurzbach SC, Turrina C, Mairhofer J, Schwaminger SP, Berensmeier S. Direct capture and selective elution of a secreted polyglutamate-tagged nanobody using bare magnetic nanoparticles. Biotechnol J 2022; 17:e2100577. [PMID: 35085417 DOI: 10.1002/biot.202100577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND The secretion and direct capture of proteins from the extracellular medium is a promising approach for purification, thus enabling integrated bioprocesses. MAJOR RESULTS We demonstrate the secretion of a nanobody (VHH) to the extracellular medium (EM) and its direct capture by bare, non-functionalized magnetic nanoparticles (MNPs). An ompA signal peptide for periplasmic localization, a polyglutamate-tag (E8 ) for selective MNP binding, and a factor Xa protease cleavage site were fused N-terminally to the nanobody. The extracellular production of the E8 -VHH (36 mg L-1 ) was enabled using a growth-decoupled Escherichia coli-based expression system. The direct binding of E8 -VHH to the bare magnetic nanoparticles was possible and could be drastically improved up to a yield of 88% by adding polyethylene glycol (PEG). The selectivity of the polyglutamate-tag enabled a selective elution of the E8 -VHH from the bare MNPs while raising the concentration factor (5x) and purification factor (4x) significantly. CONCLUSION Our studies clearly show that the unique combination of a growth-decoupled E. coli secretion system, the polyglutamate affinity tag, non-functionalized magnetic nanoparticles, and affinity magnetic precipitation is an innovative and novel way to capture and concentrate nanobodies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Alexander A Zanker
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr. 15, Garching, 85748, Germany
| | | | - Sophie C Kurzbach
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr. 15, Garching, 85748, Germany
| | - Chiara Turrina
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr. 15, Garching, 85748, Germany
| | | | - Sebastian P Schwaminger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr. 15, Garching, 85748, Germany
| | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, Boltzmannstr. 15, Garching, 85748, Germany
| |
Collapse
|
4
|
Sandomenico A, Sivaccumar JP, Ruvo M. Evolution of Escherichia coli Expression System in Producing Antibody Recombinant Fragments. Int J Mol Sci 2020; 21:ijms21176324. [PMID: 32878291 PMCID: PMC7504322 DOI: 10.3390/ijms21176324] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/12/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Antibodies and antibody-derived molecules are continuously developed as both therapeutic agents and key reagents for advanced diagnostic investigations. Their application in these fields has indeed greatly expanded the demand of these molecules and the need for their production in high yield and purity. While full-length antibodies require mammalian expression systems due to the occurrence of functionally and structurally important glycosylations, most antibody fragments and antibody-like molecules are non-glycosylated and can be more conveniently prepared in E. coli-based expression platforms. We propose here an updated survey of the most effective and appropriate methods of preparation of antibody fragments that exploit E. coli as an expression background and review the pros and cons of the different platforms available today. Around 250 references accompany and complete the review together with some lists of the most important new antibody-like molecules that are on the market or are being developed as new biotherapeutics or diagnostic agents.
Collapse
|
5
|
Ghamghami E, Abri Aghdam M, Tohidkia MR, Ahmadikhah A, Khanmohammadi M, Mehdipour T, Mokhtarzadeh A, Baradaran B. Optimization of Tris/EDTA/Sucrose (TES) periplasmic extraction for the recovery of functional scFv antibodies. AMB Express 2020; 10:129. [PMID: 32691183 PMCID: PMC7371774 DOI: 10.1186/s13568-020-01063-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/13/2020] [Indexed: 11/25/2022] Open
Abstract
Single-chain variable fragments (scFvs) have gained increased attention among researchers in both academic and industrial fields owing to simple production in E. coli. The E. coli periplasm has been the site of choice for the expression of scFv molecules due to its oxidizing milieu facilitating correctly formation of disulfide bonds. Hence, the recovery of high-yield and biologically active species from the periplasmic space is a critical step at beginning of downstream processing. TES (Tris/EDTA/Sucrose) as a simple and efficient extraction method has been frequently used but under varied extraction conditions, over literature. This study, for the first time, aimed to interrogate the effects of four independent variables (i.e., Tris-HCl concentration, buffer's pH, EDTA concentration, and incubation time) and their potential interactions on the functional extraction yield of an scFv antibody from the periplasmic space of E. coli. The results indicated that the Tris-HCl concentration and pH are the most significant variables in the TES method and displayed a positive effect at their lower values on the functional extraction yield. Besides, the statistical analysis revealed 4 significant interactions between different variables. Here is the first report on the successful application of a design of experiment based on a central composite design to establish a generic and optimal TES extraction condition. Accordingly, an optimal condition for TES extraction of scFv molecules from the periplasm of HB2151 at the exponential phase was developed as follows: 50 mM Tris-HCl at pH 7.2, 0.53 mM EDTA, and an incubation time of 60 min.
Collapse
Affiliation(s)
- Elham Ghamghami
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Marjan Abri Aghdam
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mohammad Reza Tohidkia
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Asadollah Ahmadikhah
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, G.C Velenjak, Tehran, Iran
| | - Morteza Khanmohammadi
- Chemical Engineering Faculty, Sahand University of Technology, Sahand New Town, Tabriz, Iran
| | - Tayebeh Mehdipour
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
de Marco A. Recombinant expression of nanobodies and nanobody-derived immunoreagents. Protein Expr Purif 2020; 172:105645. [PMID: 32289357 PMCID: PMC7151424 DOI: 10.1016/j.pep.2020.105645] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022]
Abstract
Antibody fragments for which the sequence is available are suitable for straightforward engineering and expression in both eukaryotic and prokaryotic systems. When produced as fusions with convenient tags, they become reagents which pair their selective binding capacity to an orthogonal function. Several kinds of immunoreagents composed by nanobodies and either large proteins or short sequences have been designed for providing inexpensive ready-to-use biological tools. The possibility to choose among alternative expression strategies is critical because the fusion moieties might require specific conditions for correct folding or post-translational modifications. In the case of nanobody production, the trend is towards simpler but reliable (bacterial) methods that can substitute for more cumbersome processes requiring the use of eukaryotic systems. The use of these will not disappear, but will be restricted to those cases in which the final immunoconstructs must have features that cannot be obtained in prokaryotic cells. At the same time, bacterial expression has evolved from the conventional procedure which considered exclusively the nanobody and nanobody-fusion accumulation in the periplasm. Several reports show the advantage of cytoplasmic expression, surface-display and secretion for at least some applications. Finally, there is an increasing interest to use as a model the short nanobody sequence for the development of in silico methodologies aimed at optimizing the yields, stability and affinity of recombinant antibodies. There is an increasing request for immunoreagents based on nanobodies. The multiplicity of their applications requires constructs with different structural complexity. Alternative expression methods are necessary to achieve such structural requirements. In silico optimization of nanobody biophysical characteristics becomes more and more reliable.
Collapse
Affiliation(s)
- Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, S-5000, Nova Gorica, Slovenia.
| |
Collapse
|
7
|
Hamidi SR, Safdari Y, Sheikh Arabi M. Test bacterial inclusion body for activity prior to start denaturing and refolding processes to obtain active eukaryotic proteins. Protein Expr Purif 2018; 154:147-151. [PMID: 30389592 DOI: 10.1016/j.pep.2018.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/27/2018] [Accepted: 10/30/2018] [Indexed: 02/05/2023]
Abstract
One of a major drawbacks correlated with expressing antibody fragments in bacterial cells is insolubility, which is often regarded as an obstacle in obtaining active molecules. Recombinant proteins aggregated as inclusion bodies within bacterial cells are thought to be unfolded or misfolded, and therefore inactive. So, denaturing and refolding strategies, which are laborious and sometime inefficient, are used to obtain correctly-folded active proteins. In the current study, we show that large quantities of correctly folded and completely active scFv molecules are there in bacterial inclusion bodies; they only need to be isolated from inclusion bodies.
Collapse
Affiliation(s)
- Seyedeh Roghayeh Hamidi
- Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Yaghoub Safdari
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mehdi Sheikh Arabi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
8
|
Liu ZH, Huang D, Fu XJ, Cheng P, Du EQ. Comparison of three commonly used fusion tags for the expression of nanobodies in the cytoplasm of Escherichia coli. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2017.1420426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Ze-hui Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A & F University, Xianyang, Shaanxi, PR China
| | - Di Huang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A & F University, Xianyang, Shaanxi, PR China
| | - Xiang-jing Fu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A & F University, Xianyang, Shaanxi, PR China
| | - Peng Cheng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A & F University, Xianyang, Shaanxi, PR China
| | - En-qi Du
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A & F University, Xianyang, Shaanxi, PR China
| |
Collapse
|
9
|
Liu Y, Huang H. Expression of single-domain antibody in different systems. Appl Microbiol Biotechnol 2017; 102:539-551. [DOI: 10.1007/s00253-017-8644-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/09/2017] [Accepted: 11/12/2017] [Indexed: 10/18/2022]
|