1
|
Zatorski JM, Raskovic D, Arneja A, Kiridena S, Ozulumba T, Hammel JH, Anbaei P, Ortiz-Cárdenas JE, Braciale TJ, Munson JM, Luckey CJ, Pompano RR. Initiation of primary T cell-B cell interactions and extrafollicular antibody responses in an organized microphysiological model of the human lymph node. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.12.632545. [PMID: 39868310 PMCID: PMC11761657 DOI: 10.1101/2025.01.12.632545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Antibody production is central to protection against new pathogens and cancers, as well as to certain forms of autoimmunity. Antibodies often originate in the lymph node (LN), specifically at the extrafollicular border of B cell follicles, where T and B lymphocytes physically interact to drive B cell maturation into antibody-secreting plasmablasts. In vitro models of this process are sorely needed to predict aspects of the human immune response. Microphysiological systems (MPSs) offer the opportunity to approximate the lymphoid environment, but so far have focused primarily on memory recall responses to antigens previously encountered by donor cells. To date, no 3D culture system has replicated the engagement between T cells and B cells (T-B interaction) that leads to antibody production when starting with naïve cells. Here, we developed a LN-MPS to model early T-B interactions at the extrafollicular border built from primary, naïve human lymphocytes encapsulated within a collagen-based 3D matrix. Within the MPS, naïve T cells exhibited CCL21-dependent chemotaxis and chemokinesis as predicted. Naïve T and B cells were successfully skewed on chip to an early T follicular helper (pre-Tfh) and activated state, respectively, and co-culture of the latter cells led to CD38+ plasmablast cells and T cell dependent production of IgM. These responses required differentiation of the T cells into pre-Tfhs, physical cell-cell contact, and were sensitive to the ratio at which pre-Tfh and activated B cells were seeded on-chip. Dependence on T cell engagement was greatest at a 1:5 T:B ratio, while cell proliferation and CD38+ signal was greatest at a 1:1 T:B ratio. Furthermore, plasmablast formation was established starting from naïve T and B cells on-chip. We envision that this MPS model of primary lymphocyte physiology will enable new mechanistic analyses of human humoral immunity in vitro.
Collapse
Affiliation(s)
- Jonathan M Zatorski
- Department of Chemistry, 409 McCormick Road, University of Virginia, Charlottesville, VA 22904
| | - Djuro Raskovic
- Department of Chemistry, 409 McCormick Road, University of Virginia, Charlottesville, VA 22904
| | - Abhinav Arneja
- Department of Pathology, University of Virginia, Charlottesville, VA 22908
| | - Saweetha Kiridena
- Department of Chemistry, 409 McCormick Road, University of Virginia, Charlottesville, VA 22904
| | - Tochukwu Ozulumba
- Department of Chemistry, 409 McCormick Road, University of Virginia, Charlottesville, VA 22904
| | - Jennifer H Hammel
- Fralin Biomedical Research Institute and Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Roanoke, VA
| | - Parastoo Anbaei
- Department of Chemistry, 409 McCormick Road, University of Virginia, Charlottesville, VA 22904
| | - Jennifer E Ortiz-Cárdenas
- Department of Chemistry, 409 McCormick Road, University of Virginia, Charlottesville, VA 22904
- Stanford University, Department of Bioengineering, 443 Via Ortega, Rm 119, Stanford, CA 94305, United States
| | - Thomas J Braciale
- Department of Pathology, University of Virginia, Charlottesville, VA 22908
| | - Jennifer M Munson
- Fralin Biomedical Research Institute and Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Roanoke, VA
| | - Chance John Luckey
- Department of Pathology, University of Virginia, Charlottesville, VA 22908
| | - Rebecca R Pompano
- Department of Chemistry, 409 McCormick Road, University of Virginia, Charlottesville, VA 22904
- Department of Pathology, University of Virginia, Charlottesville, VA 22908
- Department of Biomedical Engineering, University of Virginia School of Engineering and Applied Sciences, Thornton Hall, 351 McCormick Rd, Charlottesville, VA 22904
| |
Collapse
|
2
|
Cook SR, Ball AG, Mohammad A, Pompano RR. A 3D-printed multi-compartment organ-on-chip platform with a tubing-free pump models communication with the lymph node. LAB ON A CHIP 2025; 25:155-174. [PMID: 39661075 PMCID: PMC11633827 DOI: 10.1039/d4lc00489b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
Multi-organ-on-chip systems (MOOCs) have the potential to mimic communication between organ systems and reveal mechanisms of health and disease. However, many existing MOOCs are challenging for non-experts to implement due to complex tubing, electronics, or pump mechanisms. In addition, few MOOCs have incorporated immune organs such as the lymph node (LN), limiting their applicability to model critical events such as vaccination. Here we developed a 3D-printed, user-friendly device and companion tubing-free impeller pump with the capacity to co-culture two or more tissue samples, including a LN, under a recirculating common media. Native tissue structure and immune function were incorporated by maintaining slices of murine LN tissue ex vivo in 3D-printed mesh supports for at least 24 h. In a two-compartment model of a LN and an upstream injection site in mock tissue, vaccination of the multi-compartment chip was similar to in vivo vaccination in terms of locations of antigen accumulation and acute changes in activation markers and gene expression in the LN. We anticipate that in the future, this flexible platform will enable models of multi-organ immune responses throughout the body.
Collapse
Affiliation(s)
- Sophie R Cook
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA.
| | - Alexander G Ball
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Carter Immunology Center and UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA, USA
| | | | - Rebecca R Pompano
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA.
- Carter Immunology Center and UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
3
|
Ball AG, Morgaenko K, Anbaei P, Ewald SE, Pompano RR. Poly I:C vaccination drives transient CXCL9 expression near B cell follicles in the lymph node through type-I and type-II interferon signaling. Cytokine 2024; 183:156731. [PMID: 39168064 PMCID: PMC11428038 DOI: 10.1016/j.cyto.2024.156731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
Subunit vaccines drive immune cell-cell interactions in the lymph node (LN), yet it remains unclear how distinct adjuvants influence the chemokines responsible for this interaction in the tissue. Here, we tested the hypothesis that classic Th1-polarizing vaccines elicit a unique chemokine signature in the LN compared to other adjuvants. Polyinosinic:polycytidylic acid (Poly I:C) vaccination resulted in dynamic upregulation of CXCL9 that was localized in the interfollicular region, a response not observed after vaccination with alum or a combination of alum and poly I:C. Experiments using in vivo mouse models and live ex vivo LN slices revealed that poly I:C vaccination resulted in a type-I IFN response in the LN that led to the secretion of IFNγ, and type-I IFN and IFNγ were required for CXCL9 expression in this context. CXCL9 expression in the LN was correlated with an IgG2c antibody polarization after vaccination; however, genetic depletion of the receptor for CXCL9 did not prevent the development of this polarization. Additionally, we measured secretion of CXCL9 from ex vivo LN slices after stimulation with a variety of adjuvants and confirmed that adjuvants that induced IFNγ responses also promoted CXCL9 expression. Taken together, these results identify a CXCL9 signature in a suite of Th1-polarizing adjuvants and determined the pathway involved in driving CXCL9 in the LN, opening avenues to target this chemokine pathway in future vaccines.
Collapse
Affiliation(s)
- Alexander G Ball
- Department of Microbiology Cancer Biology and Immunology, University of Virginia, Charlottesville, VA 22903, USA; Carter Immunology Center and UVA Cancer Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Katerina Morgaenko
- Department of Biomedical Engineering, University of Virginia School of Engineering and Applied Sciences, Charlottesville, VA 22904, USA
| | - Parastoo Anbaei
- Department of Chemistry, University of Virginia College of Arts and Sciences, Charlottesville, VA 22904, USA
| | - Sarah E Ewald
- Department of Microbiology Cancer Biology and Immunology, University of Virginia, Charlottesville, VA 22903, USA; Carter Immunology Center and UVA Cancer Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Rebecca R Pompano
- Department of Biomedical Engineering, University of Virginia School of Engineering and Applied Sciences, Charlottesville, VA 22904, USA; Department of Chemistry, University of Virginia College of Arts and Sciences, Charlottesville, VA 22904, USA; Carter Immunology Center and UVA Cancer Center, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
4
|
Morgaenko K, Arneja A, Ball AG, Putelo AM, Munson JM, Rutkowski MR, Pompano RR. Ex vivo model of breast cancer cell invasion in live lymph node tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.601753. [PMID: 39091774 PMCID: PMC11291011 DOI: 10.1101/2024.07.18.601753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Lymph nodes (LNs) are common sites of metastatic invasion in breast cancer, often preceding spread to distant organs and serving as key indicators of clinical disease progression. However, the mechanisms of cancer cell invasion into LNs are not well understood. Existing in vivo models struggle to isolate the specific impacts of the tumor-draining lymph node (TDLN) milieu on cancer cell invasion due to the co-evolving relationship between TDLNs and the upstream tumor. To address these limitations, we used live ex vivo LN tissue slices with intact chemotactic function to model cancer cell spread within a spatially organized microenvironment. After showing that BRPKp110 breast cancer cells were chemoattracted to factors secreted by naïve LN tissue in a 3D migration assay, we demonstrated that ex vivo LN slices could support cancer cell seeding, invasion, and spread. This novel approach revealed dynamic, preferential cancer cell invasion within specific anatomical regions of LNs, particularly the subcapsular sinus (SCS) and cortex, as well as chemokine-rich domains of immobilized CXCL13 and CCL1. While CXCR5 was necessary for a portion of BRPKp110 invasion into naïve LNs, disruption of CXCR5/CXCL13 signaling alone was insufficient to prevent invasion towards CXCL13-rich domains. Finally, we extended this system to pre-metastatic TDLNs, where the ex vivo model predicted a lower invasion of cancer cells. The reduced invasion was not due to diminished chemokine secretion, but it correlated with elevated intranodal IL-21. In summary, this innovative ex vivo model of cancer cell spread in live LN slices provides a platform to investigate cancer invasion within the intricate tissue microenvironment, supporting time-course analysis and parallel read-outs. We anticipate that this system will enable further research into cancer-immune interactions and allow isolation of specific factors that make TDLNs resistant to cancer cell invasion, which are challenging to dissect in vivo.
Collapse
Affiliation(s)
- Katerina Morgaenko
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
- Carter Immunology Center and University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Abhinav Arneja
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Alexander G Ball
- Carter Immunology Center and University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Audrey M Putelo
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Jennifer M Munson
- Department of Biomedical Engineering and Mechanics, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA, United States
| | - Melanie R Rutkowski
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Rebecca R Pompano
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
- Carter Immunology Center and University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
5
|
Varier KM, Dan G, Li X, Liu W, Jiang F, Linghu KG, Li Y, Ben-David Y, Zhang N, Xiao C, Gajendran B, Shen X. B4 suppresses lymphoma progression by inhibiting fibroblast growth factor binding protein 1 through intrinsic apoptosis. Front Pharmacol 2024; 15:1408389. [PMID: 39005939 PMCID: PMC11239434 DOI: 10.3389/fphar.2024.1408389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/14/2024] [Indexed: 07/16/2024] Open
Abstract
Lymphoma positions as the fifth most common cancer, in the world, reporting remarkable deaths every year. Several promising strategies to counter this disease recently include utilizing small molecules that specifically target the lymphoma cellular proteins to overwhelm its progression. FGFBP1 is a soluble intracellular protein that progresses cancer cell proliferation and is upregulated in several cancers. Therefore, inhibiting FGFBP1 could significantly slow down lymphoma progression through triggering apoptosis. Thus, in this study, a flavonoid B4, isolated from Cajanus cajan, has been investigated for its effects of B4 on lymphoma, specifically as an FGFBP1 inhibitor. B4 could selectively hinder the growth of lymphoma cells by inducing caspase-dependent intrinsic apoptosis through G1/S transition phase cell cycle arrest. RNA sequencing analysis revealed that B4 regulates the genes involved in B-cell proliferation and DNA replication by inhibiting FGFBP1 in vitro. B4 increases the survival rate of lymphoma mice. B4 also represses the growth of patient-derived primary lymphoma cells through FGFBP1 inhibition. Drug affinity responsive target stability experimentations authorize that B4 powerfully binds to FGFBP1. The overexpression of FGFBP1 raises the pharmacological sensitivity of B4, supplementing its specific action on lymphoma cells. This study pioneers the estimation of B4 as a possible anticancer agent for lymphoma treatment. These outcomes highlight its selective inhibitory effects on lymphoma cell growth by downregulating FGFBP1 expression through intrinsic apoptosis, causing mitochondrial and DNA damage, ultimately leading to the inhibition of lymphoma progression. These suggest B4 may be a novel FGFBP1 inhibitor for the lymphoma treatment.
Collapse
Affiliation(s)
- Krishnapriya M Varier
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Gou Dan
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiaolong Li
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Wuling Liu
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Fei Jiang
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Ke-Gang Linghu
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Yanmei Li
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Yaacov Ben-David
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Nenling Zhang
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Chaoda Xiao
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Babu Gajendran
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Xiangchun Shen
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| |
Collapse
|
6
|
Anbaei P, Stevens MG, Ball AG, Bullock TNJ, Pompano RR. Spatially resolved quantification of oxygen consumption rate in ex vivo lymph node slices. Analyst 2024; 149:2609-2620. [PMID: 38535830 PMCID: PMC11056769 DOI: 10.1039/d4an00028e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/09/2024] [Indexed: 04/09/2024]
Abstract
Cellular metabolism has been closely linked to activation state in cells of the immune system, and the oxygen consumption rate (OCR) in particular serves as a valuable metric for assessing metabolic activity. Several oxygen sensing assays have been reported for cells in standard culture conditions. However, none have provided a spatially resolved, optical measurement of local oxygen consumption in intact tissue samples, making it challenging to understand regional dynamics of consumption. Therefore, here we established a system to monitor the rates of oxygen consumption in ex vivo tissue slices, using murine lymphoid tissue as a case study. By integrating an optical oxygen sensor into a sealed perfusion chamber and incorporating appropriate correction for photobleaching of the sensor and of tissue autofluorescence, we were able to visualize and quantify rates of oxygen consumption in tissue. This method revealed for the first time that the rate of oxygen consumption in naïve lymphoid tissue was higher in the T cell region compared to the B cell and cortical regions. To validate the method, we measured OCR in the T cell regions of naïve lymph node slices using the optical assay and estimated the consumption rate per cell. The predictions from the optical assay were similar to reported values and were not significantly different from those of the Seahorse metabolic assay, a gold standard method for measuring OCR in cell suspensions. Finally, we used this method to quantify the rate of onset of tissue hypoxia for lymph node slices cultured in a sealed chamber and showed that continuous perfusion was sufficient to maintain oxygenation. In summary, this work establishes a method to monitor oxygen consumption with regional resolution in intact tissue explants, suitable for future use to compare tissue culture conditions and responses to stimulation.
Collapse
Affiliation(s)
- Parastoo Anbaei
- Department of Chemistry, University of Virginia College of Arts and, Sciences, Charlottesville, Virginia 22904, USA.
| | - Marissa G Stevens
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22903, USA
- Carter Immunology Center and UVA Cancer Center, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Alexander G Ball
- Department of Microbiology Cancer Biology and Immunology, University of Virginia, Charlottesville, Virginia 22903, USA
- Carter Immunology Center and UVA Cancer Center, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Timothy N J Bullock
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22903, USA
- Carter Immunology Center and UVA Cancer Center, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Rebecca R Pompano
- Department of Chemistry, University of Virginia College of Arts and, Sciences, Charlottesville, Virginia 22904, USA.
- Department of Biomedical Engineering, University of Virginia School of Engineering and Applied Sciences, Charlottesville, Virginia 22904, USA
- Carter Immunology Center and UVA Cancer Center, University of Virginia, Charlottesville, Virginia 22903, USA
| |
Collapse
|
7
|
Anbaei P, Stevens MG, Ball AG, Bullock TNJ, Pompano RR. Spatially resolved quantification of oxygen consumption rate in ex vivo lymph node slices. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.573955. [PMID: 38260315 PMCID: PMC10802365 DOI: 10.1101/2024.01.03.573955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cellular metabolism has been closely linked to activation state in cells of the immune system, and the oxygen consumption rate (OCR) in particular serves as a valuable metric for assessing metabolic activity. Several oxygen sensing assays have been reported for cells in standard culture conditions. However, none have provided a spatially resolved, optical measurement of local oxygen consumption in intact tissue samples, making it challenging to understand regional dynamics of consumption. Therefore, here we established a system to monitor the rates of oxygen consumption in ex vivo tissue slices, using murine lymphoid tissue as a case study. By integrating an optical oxygen sensor into a sealed perfusion chamber and incorporating appropriate correction for photobleaching of the sensor and of tissue autofluorescence, we were able to visualize and quantify rates of oxygen consumption in tissue. This method revealed for the first time that the rate of oxygen consumption in naïve lymphoid tissue was higher in the T cell region compared to the B cell and cortical regions. To validate the method, we measured OCR in the T cell regions of naïve lymph node slices using the optical assay and estimated the consumption rate per cell. The predictions from the optical assay were similar to reported values and were not significantly different from those of the Seahorse metabolic assay, a gold standard method for measuring OCR in cell suspensions. Finally, we used this method to quantify the rate of onset of tissue hypoxia for lymph node slices cultured in a sealed chamber and showed that continuous perfusion was sufficient to maintain oxygenation. In summary, this work establishes a method to monitor oxygen consumption with regional resolution in intact tissue explants, suitable for future use to compare tissue culture conditions and responses to stimulation. TOC image
Collapse
|
8
|
Delong LM, Ross AE. Open multi-organ communication device for easy interrogation of tissue slices. LAB ON A CHIP 2023; 23:3034-3049. [PMID: 37278087 PMCID: PMC10330603 DOI: 10.1039/d3lc00115f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Here, we have developed an open multi-organ communication device that facilitates cellular and molecular communication between ex vivo organ slices. Measuring communication between organs is vital for understanding the mechanisms of health regulation yet remains difficult with current technology. Communication between organs along the gut-brain-immune axis is a key regulator of gut homeostasis. As a novel application of the device, we have used tissue slices from the Peyer's patch (PP) and mesenteric lymph node (MLN) due to their importance in gut immunity; however, any organ slices could be used here. The device was designed and fabricated using a combination of 3D printed molds for polydimethylsiloxane (PDMS) soft lithography, PDMS membranes, and track-etch porous membranes. To validate cellular and protein transfer between organs on-chip, we used fluorescence microscopy to quantitate movement of fluorescent proteins and cells from the PP to the MLN, replicating the initial response to immune stimuli in the gut. IFN-γ secretion during perfusion from a naïve vs. inflamed PP to a healthy MLN was quantitated to demonstrate soluble signaling molecules are moving on-chip. Finally, transient catecholamine release was measured during perfusion from PP to MLN using fast-scan cyclic voltammetry at carbon-fiber microelectrodes to demonstrate a novel application of the device for real-time sensing during communication. Overall, we show an open-well multi-organ device capable of facilitating transfer of soluble factors and cells with the added benefit of being available for external analysis techniques like electrochemical sensing which will advance abilities to probe communication in real-time across multiple organs ex vivo.
Collapse
Affiliation(s)
- Lauren M Delong
- Department of Chemistry, University of Cincinnati, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| | - Ashley E Ross
- Department of Chemistry, University of Cincinnati, 312 College Dr., 404 Crosley Tower, Cincinnati, OH 45221-0172, USA.
| |
Collapse
|
9
|
Wu KZ, Adine C, Mitriashkin A, Aw BJJ, Iyer NG, Fong ELS. Making In Vitro Tumor Models Whole Again. Adv Healthc Mater 2023; 12:e2202279. [PMID: 36718949 PMCID: PMC11469124 DOI: 10.1002/adhm.202202279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/04/2023] [Indexed: 02/01/2023]
Abstract
As a reductionist approach, patient-derived in vitro tumor models are inherently still too simplistic for personalized drug testing as they do not capture many characteristics of the tumor microenvironment (TME), such as tumor architecture and stromal heterogeneity. This is especially problematic for assessing stromal-targeting drugs such as immunotherapies in which the density and distribution of immune and other stromal cells determine drug efficacy. On the other end, in vivo models are typically costly, low-throughput, and time-consuming to establish. Ex vivo patient-derived tumor explant (PDE) cultures involve the culture of resected tumor fragments that potentially retain the intact TME of the original tumor. Although developed decades ago, PDE cultures have not been widely adopted likely because of their low-throughput and poor long-term viability. However, with growing recognition of the importance of patient-specific TME in mediating drug response, especially in the field of immune-oncology, there is an urgent need to resurrect these holistic cultures. In this Review, the key limitations of patient-derived tumor explant cultures are outlined and technologies that have been developed or could be employed to address these limitations are discussed. Engineered holistic tumor explant cultures may truly realize the concept of personalized medicine for cancer patients.
Collapse
Affiliation(s)
- Kenny Zhuoran Wu
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - Christabella Adine
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - Aleksandr Mitriashkin
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - Benjamin Jun Jie Aw
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
| | - N. Gopalakrishna Iyer
- Department of Head and Neck Surgery, Division of Surgery and Surgical OncologyDuke‐NUS Medical SchoolSingapore169857Singapore
- Department of Head and Neck SurgeryNational Cancer Centre SingaporeSingapore169610Singapore
| | - Eliza Li Shan Fong
- Department of Biomedical EngineeringCollege of Design and EngineeringNational University of SingaporeSingapore119276Singapore
- The N.1 Institute for HealthNational University of SingaporeSingapore117456Singapore
- Cancer Science Institute (CSI)National University of SingaporeSingapore117599Singapore
| |
Collapse
|
10
|
Horsnell HL, Tetley RJ, De Belly H, Makris S, Millward LJ, Benjamin AC, Heeringa LA, de Winde CM, Paluch EK, Mao Y, Acton SE. Lymph node homeostasis and adaptation to immune challenge resolved by fibroblast network mechanics. Nat Immunol 2022; 23:1169-1182. [PMID: 35882934 PMCID: PMC9355877 DOI: 10.1038/s41590-022-01272-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 06/15/2022] [Indexed: 11/23/2022]
Abstract
Emergent physical properties of tissues are not readily understood by reductionist studies of their constituent cells. Here, we show molecular signals controlling cellular, physical, and structural properties and collectively determine tissue mechanics of lymph nodes, an immunologically relevant adult tissue. Lymph nodes paradoxically maintain robust tissue architecture in homeostasis yet are continually poised for extensive expansion upon immune challenge. We find that in murine models of immune challenge, cytoskeletal mechanics of a cellular meshwork of fibroblasts determine tissue tension independently of extracellular matrix scaffolds. We determine that C-type lectin-like receptor 2 (CLEC-2)-podoplanin signaling regulates the cell surface mechanics of fibroblasts, providing a mechanically sensitive pathway to regulate lymph node remodeling. Perturbation of fibroblast mechanics through genetic deletion of podoplanin attenuates T cell activation. We find that increased tissue tension through the fibroblastic stromal meshwork is required to trigger the initiation of fibroblast proliferation and restore homeostatic cellular ratios and tissue structure through lymph node expansion.
Collapse
Affiliation(s)
- Harry L Horsnell
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Robert J Tetley
- Tissue Mechanics Group, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Henry De Belly
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Spyridon Makris
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Lindsey J Millward
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Agnesska C Benjamin
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Lucas A Heeringa
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Charlotte M de Winde
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Ewa K Paluch
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Yanlan Mao
- Tissue Mechanics Group, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
| | - Sophie E Acton
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, London, UK.
| |
Collapse
|
11
|
Demkovych A, Bondarenko Y, Shcherba V, Luchynskyi V, Vitkovskyy V, Machogan V. Quercetin effects on adaptive immune response in experimental periodontitis of bacterial-immune genesis. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e70883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the article was studied the effects of flavonol quercetin on indices of adaptive immune response in experimental animals on the 14th day of the experimental bacterial-immune periodontitis development. Indices of immune protection were determined by the relative number of lymphocytes with CD3+, CD4+, CD8+, CD19+, CD16+ and immunoregulatory index (CD4+ / CD8+) in intact animals and on the 14th day of inflammatory process development in periodontal tissues as well as the therapeutic effects of flavonol quercetin. As a result of the study, characterized changes associated with the activity of both the cell-mediated and humoral-immune response were found, both in the development of experimental periodontitis, and apply of flavonol. In particular, there was an increase in the animal’s blood relative amount of CD8+, CD16+ cells on the 14th day, and content of CD3+, CD4+, CD19+ was decreased. In this case, the immunoregulatory index (CD4+ / CD8+) as an important index of immunological activity was decreased. The apply of flavonol quercetin in the period development of bacterial-immune periodontitis animals functional activity of the T-cell line of the immune system was increased, as evidenced percentage increase of B- and T-cells due to T-helper cells decrease as well as T-killers content during this period of inflammatory reaction in the periodontal complex, in comparison with animals, which were not treated.
Collapse
|
12
|
Hammel JH, Cook SR, Belanger MC, Munson JM, Pompano RR. Modeling Immunity In Vitro: Slices, Chips, and Engineered Tissues. Annu Rev Biomed Eng 2021; 23:461-491. [PMID: 33872520 PMCID: PMC8277680 DOI: 10.1146/annurev-bioeng-082420-124920] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Modeling immunity in vitro has the potential to be a powerful tool for investigating fundamental biological questions, informing therapeutics and vaccines, and providing new insight into disease progression. There are two major elements to immunity that are necessary to model: primary immune tissues and peripheral tissues with immune components. Here, we systematically review progress made along three strategies to modeling immunity: ex vivo cultures, which preserve native tissue structure; microfluidic devices, which constitute a versatile approach to providing physiologically relevant fluid flow and environmental control; and engineered tissues, which provide precise control of the 3D microenvironment and biophysical cues. While many models focus on disease modeling, more primary immune tissue models are necessary to advance the field. Moving forward, we anticipate that the expansion of patient-specific models may inform why immunity varies from patient to patient and allow for the rapid comprehension and treatment of emerging diseases, such as coronavirus disease 2019.
Collapse
Affiliation(s)
- Jennifer H Hammel
- Fralin Biomedical Research Institute and Department of Biomedical Engineering and Mechanics, Virginia Tech, Roanoke, Virginia 24016, USA;
| | - Sophie R Cook
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Maura C Belanger
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Jennifer M Munson
- Fralin Biomedical Research Institute and Department of Biomedical Engineering and Mechanics, Virginia Tech, Roanoke, Virginia 24016, USA;
| | - Rebecca R Pompano
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, USA;
- Carter Immunology Center and UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
| |
Collapse
|
13
|
Majorova D, Atkins E, Martineau H, Vokral I, Oosterhuis D, Olinga P, Wren B, Cuccui J, Werling D. Use of Precision-Cut Tissue Slices as a Translational Model to Study Host-Pathogen Interaction. Front Vet Sci 2021; 8:686088. [PMID: 34150901 PMCID: PMC8212980 DOI: 10.3389/fvets.2021.686088] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022] Open
Abstract
The recent increase in new technologies to analyze host-pathogen interaction has fostered a race to develop new methodologies to assess these not only on the cellular level, but also on the tissue level. Due to mouse-other mammal differences, there is a desperate need to develop relevant tissue models that can more closely recapitulate the host tissue during disease and repair. Whereas organoids and organs-on-a-chip technologies have their benefits, they still cannot provide the cellular and structural complexity of the host tissue. Here, precision cut tissue slices (PCTS) may provide invaluable models for complex ex-vivo generated tissues to assess host-pathogen interaction as well as potential vaccine responses in a “whole organ” manner. In this mini review, we discuss the current literature regarding PCTS in veterinary species and advocate that PCTS represent remarkable tools to further close the gap between target identification, subsequent translation of results into clinical studies, and thus opening avenues for future precision medicine approaches.
Collapse
Affiliation(s)
- Dominika Majorova
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - Elizabeth Atkins
- London School of Hygiene and Tropical Medicine, University of London, London, United Kingdom
| | - Henny Martineau
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - Ivan Vokral
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Prague, Czechia
| | - Dorenda Oosterhuis
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, Netherlands
| | - Brendan Wren
- London School of Hygiene and Tropical Medicine, University of London, London, United Kingdom
| | - Jon Cuccui
- London School of Hygiene and Tropical Medicine, University of London, London, United Kingdom
| | - Dirk Werling
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| |
Collapse
|
14
|
Belanger M, Ball AG, Catterton MA, Kinman AW, Anbaei P, Groff BD, Melchor SJ, Lukens JR, Ross AE, Pompano RR. Acute Lymph Node Slices Are a Functional Model System to Study Immunity Ex Vivo. ACS Pharmacol Transl Sci 2021; 4:128-142. [PMID: 33615167 PMCID: PMC7887751 DOI: 10.1021/acsptsci.0c00143] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 02/07/2023]
Abstract
The lymph node is a highly organized and dynamic structure that is critical for facilitating the intercellular interactions that constitute adaptive immunity. Most ex vivo studies of the lymph node begin by reducing it to a cell suspension, thus losing the spatial organization, or fixing it, thus losing the ability to make repeated measurements. Live murine lymph node tissue slices offer the potential to retain spatial complexity and dynamic accessibility, but their viability, level of immune activation, and retention of antigen-specific functions have not been validated. Here we systematically characterized live murine lymph node slices as a platform to study immunity. Live lymph node slices maintained the expected spatial organization and cell populations while reflecting the 3D spatial complexity of the organ. Slices collected under optimized conditions were comparable to cell suspensions in terms of both 24-h viability and inflammation. Slices responded to T cell receptor cross-linking with increased surface marker expression and cytokine secretion, in some cases more strongly than matched lymphocyte cultures. Furthermore, slices processed protein antigens, and slices from vaccinated animals responded to ex vivo challenge with antigen-specific cytokine secretion. In summary, lymph node slices provide a versatile platform to investigate immune functions in spatially organized tissue, enabling well-defined stimulation, time-course analysis, and parallel read-outs.
Collapse
Affiliation(s)
- Maura
C. Belanger
- Department
of Chemistry, University of Virginia College
of Arts and Sciences, Charlottesville, Virginia 22904, United States
- Carter
Immunology Center, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Alexander G. Ball
- Carter
Immunology Center, University of Virginia, Charlottesville, Virginia 22904, United States
- Department
of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22904, United States
| | - Megan A. Catterton
- Department
of Chemistry, University of Virginia College
of Arts and Sciences, Charlottesville, Virginia 22904, United States
| | - Andrew W.L. Kinman
- Department
of Chemistry, University of Virginia College
of Arts and Sciences, Charlottesville, Virginia 22904, United States
| | - Parastoo Anbaei
- Department
of Chemistry, University of Virginia College
of Arts and Sciences, Charlottesville, Virginia 22904, United States
| | - Benjamin D. Groff
- Department
of Chemistry, University of Virginia College
of Arts and Sciences, Charlottesville, Virginia 22904, United States
| | - Stephanie J. Melchor
- Carter
Immunology Center, University of Virginia, Charlottesville, Virginia 22904, United States
- Department
of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22904, United States
| | - John R. Lukens
- Carter
Immunology Center, University of Virginia, Charlottesville, Virginia 22904, United States
- Department
of Neuroscience and Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, Virginia 22904, United States
| | - Ashley E. Ross
- Department
of Chemistry, University of Cincinnati, Cincinnati, Ohio 45220, United States
| | - Rebecca R. Pompano
- Department
of Chemistry, University of Virginia College
of Arts and Sciences, Charlottesville, Virginia 22904, United States
- Carter
Immunology Center, University of Virginia, Charlottesville, Virginia 22904, United States
- Department
of Biomedical Engineering, University of
Virginia School of Engineering and Applied Sciences, Charlottesville, Virginia 22904, United States
| |
Collapse
|
15
|
Dunn AF, Catterton MA, Dixon DD, Pompano RR. Spatially resolved measurement of dynamic glucose uptake in live ex vivo tissues. Anal Chim Acta 2021; 1141:47-56. [PMID: 33248661 PMCID: PMC7701360 DOI: 10.1016/j.aca.2020.10.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022]
Abstract
Highly proliferative cells depend heavily on glycolysis as a source of energy and biological precursor molecules, and glucose uptake is a useful readout of this aspect of metabolic activity. Glucose uptake is commonly quantified by using flow cytometry for cell cultures and positron emission tomography for organs in vivo. However, methods to detect spatiotemporally resolved glucose uptake in intact tissues are far more limited, particularly those that can quantify changes in uptake over time in specific tissue regions and cell types. Using lymph node metabolism as a case study, we developed an optimized method to detect dynamic and spatially resolved glucose uptake in living tissue by combining ex vivo tissue slice culture with a fluorescent glucose analogue. Live slices of murine lymph node were treated with the glucose analogue 2-[N-(7-nitrobenz-2-oxa-1,3-dia-xol-4-yl)amino]-2-deoxyglucose (2-NBDG). Incubation parameters were optimized to differentiate glucose uptake in activated versus naïve lymphocytes. Regional glucose uptake could be imaged at both the tissue level, by widefield microscopy, and at the cellular level, by confocal microscopy. Furthermore, the glucose assay was readily multiplexed with live immunofluorescence labelling to generate maps of 2-NBDG uptake across tissue regions, revealing highest uptake in T cell-dense regions. The signal was predominantly intracellular and localized to lymphocytes rather than stromal cells. Finally, we demonstrated that the assay was repeatable in the same slices, and imaged the dynamic distribution of glucose uptake in response to ex vivo T cell stimulation for the first time. We anticipate that this method will serve as a broadly applicable, user-friendly platform to quantify dynamic metabolic activities in complex tissue microenvironments.
Collapse
Affiliation(s)
- Austin F Dunn
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA, 22904, USA
| | - Megan A Catterton
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA, 22904, USA
| | - Drake D Dixon
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA, 22904, USA
| | - Rebecca R Pompano
- Department of Chemistry, Carter Immunology Center, University of Virginia, PO BOX 400319, Charlottesville, VA, 22904, USA.
| |
Collapse
|
16
|
Dijkgraaf FE, Toebes M, Hoogenboezem M, Mertz M, Vredevoogd DW, Matos TR, Teunissen MBM, Luiten RM, Schumacher TN. Labeling and tracking of immune cells in ex vivo human skin. Nat Protoc 2020; 16:791-811. [PMID: 33349704 DOI: 10.1038/s41596-020-00435-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/06/2020] [Indexed: 11/09/2022]
Abstract
Human skin harbors various immune cells that are crucial for the control of injury and infection. However, the current understanding of immune cell function within viable human skin tissue is limited. We developed an ex vivo imaging approach in which fresh skin biopsies are mounted and then labeled with nanobodies or antibodies against cell surface markers on tissue-resident memory CD8+ T cells, other immune cells of interest, or extracellular tissue components. Subsequent longitudinal imaging allows one to describe the dynamic behavior of human skin-resident cells in situ. In addition, this strategy can be used to study immune cell function in murine skin. The ability to follow the spatiotemporal behavior of CD8+ T cells and other immune cells in skin, including their response to immune stimuli, provides a platform to investigate physiological immune cell behavior and immune cell behavior in skin diseases. The mounting, staining and imaging of skin samples requires ~1.5 d, and subsequent tracking analysis requires a minimum of 1 d. The optional production of fluorescently labeled nanobodies takes ~5 d.
Collapse
Affiliation(s)
- Feline E Dijkgraaf
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Mireille Toebes
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Marjolijn Mertz
- BioImaging Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - David W Vredevoogd
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Tiago R Matos
- Department of Dermatology and Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Marcel B M Teunissen
- Department of Dermatology and Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Rosalie M Luiten
- Department of Dermatology and Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Ton N Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
17
|
Belanger MC, Anbaei P, Dunn AF, Kinman AW, Pompano RR. Spatially Resolved Analytical Chemistry in Intact, Living Tissues. Anal Chem 2020; 92:15255-15262. [PMID: 33201681 PMCID: PMC7864589 DOI: 10.1021/acs.analchem.0c03625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tissues are an exciting frontier for bioanalytical chemistry, one in which spatial distribution is just as important as total content. Intact tissue preserves the native cellular and molecular organization and the cell-cell contacts found in vivo. Live tissue, in particular, offers the potential to analyze dynamic events in a spatially resolved manner, leading to fundamental biological insights and translational discoveries. In this Perspective, we provide a tutorial on the four fundamental challenges for the bioanalytical chemist working in living tissue samples as well as best practices for mitigating them. The challenges include (i) the complexity of the sample matrix, which contributes myriad interfering species and causes nonspecific binding of reagents; (ii) hindered delivery and mixing; (iii) the need to maintain physiological conditions; and (iv) tissue reactivity. This framework is relevant to a variety of methods for spatially resolved chemical analysis, including optical imaging, inserted sensors and probes such as electrodes, and surface analyses such as sensing arrays. The discussion focuses primarily on ex vivo tissues, though many considerations are relevant in vivo as well. Our goal is to convey the exciting potential of analytical chemistry to contribute to understanding the functions of live, intact tissues.
Collapse
Affiliation(s)
- Maura C. Belanger
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA 22904
| | - Parastoo Anbaei
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA 22904
| | - Austin F. Dunn
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA 22904
| | - Andrew W.L. Kinman
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA 22904
| | - Rebecca R. Pompano
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA 22904
| |
Collapse
|
18
|
Belanger MC, Zhuang M, Ball AG, Richey KH, DeRosa CA, Fraser CL, Pompano RR. Labelling primary immune cells using bright blue fluorescent nanoparticles. Biomater Sci 2020; 8:1897-1909. [PMID: 32026891 DOI: 10.1039/c9bm01572h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tracking cell movements is an important aspect of many biological studies. Reagents for cell tracking must not alter the biological state of the cell and must be bright enough to be visualized above background autofluorescence, a particular concern when imaging in tissue. Currently there are few reagents compatible with standard UV excitation filter sets (e.g. DAPI) that fulfill those requirements, despite the development of many dyes optimized for violet excitation (405 nm). A family of boron-based fluorescent dyes, difluoroboron β-diketonates, has previously served as bio-imaging reagents with UV excitation, offering high quantum yields and wide excitation peaks. In this study, we investigated the use of one such dye as a potential cell tracking reagent. A library of difluoroboron dibenzoylmethane (BF2dbm) conjugates were synthesized with biocompatible polymers including: poly(l-lactic acid) (PLLA), poly(ε-caprolactone) (PCL), and block copolymers with poly(ethylene glycol) (PEG). Dye-polymer conjugates were fabricated into nanoparticles, which were stable for a week at 37 °C in water and cell culture media, but quickly aggregated in saline. Nanoparticles were used to label primary splenocytes; phagocytic cell types were more effectively labelled. Labelling with nanoparticles did not affect cellular viability, nor basic immune responses. Labelled cells were more easily distinguished when imaged on a live tissue background than those labelled with a commercially available UV-excitable cytoplasmic labelling reagent. The high efficiency in terms of both fluorescence and cellular labelling may allow these nanoparticles to act as a short-term cell labelling strategy while wide excitation peaks offer utility across imaging and analysis platforms.
Collapse
Affiliation(s)
- Maura C Belanger
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA. and Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Meng Zhuang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
| | - Alexander G Ball
- Department of Microbiology Cancer Biology and Immunology, University of Virginia, Charlottesville, Virginia 22903, USA and Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Kristen H Richey
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
| | - Christopher A DeRosa
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
| | - Cassandra L Fraser
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
| | - Rebecca R Pompano
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA. and Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22903, USA
| |
Collapse
|
19
|
Lim GN, Regan SL, Ross AE. Subsecond spontaneous catecholamine release in mesenteric lymph node ex vivo. J Neurochem 2020; 155:417-429. [DOI: 10.1111/jnc.15115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/14/2020] [Accepted: 06/15/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Gary N. Lim
- Department of Chemistry University of Cincinnati Cincinnati OH USA
| | - Samantha L. Regan
- Department of Pediatrics University of CincinnatiCollege of Medicine and Division of NeurologyCincinnati Children’s Research Foundation Cincinnati OH USA
- Neuroscience Graduate Program University of Cincinnati Cincinnati OH USA
| | - Ashley E. Ross
- Department of Chemistry University of Cincinnati Cincinnati OH USA
- Neuroscience Graduate Program University of Cincinnati Cincinnati OH USA
| |
Collapse
|
20
|
Sui M, Wang Z, Xi D, Wang H. miR‐142‐5P regulates triglyceride by targeting
CTNNB1
in goat mammary epithelial cells. Reprod Domest Anim 2020; 55:613-623. [DOI: 10.1111/rda.13660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/20/2020] [Indexed: 12/23/2022]
Affiliation(s)
- MeiXia Sui
- College of Biological and Agricultural Engineering Weifang University Weifang China
- Shandong Key Laboratory of Biochemistry and Molecular Biology in Universities Weifang University Weifang China
| | - ZongWei Wang
- Administrative Examination and Approval Service Bureau of Shouguang Weifang China
| | - Dan Xi
- College of Biological and Agricultural Engineering Weifang University Weifang China
- Shandong Key Laboratory of Biochemistry and Molecular Biology in Universities Weifang University Weifang China
| | - HanHai Wang
- College of Biological and Agricultural Engineering Weifang University Weifang China
- Shandong Key Laboratory of Biochemistry and Molecular Biology in Universities Weifang University Weifang China
| |
Collapse
|
21
|
Suar ZM, Fabris G, Kurt M. Isolation and Immunofluorescent Staining of Fresh Rat Pia-Arachnoid Complex Tissue for Micromechanical Characterization. ACTA ACUST UNITED AC 2019; 89:e83. [PMID: 31532920 DOI: 10.1002/cpns.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this article, we describe a protocol for the isolation and staining of fresh tissue of the inner rat meningeal layers, or pia-arachnoid complex (PAC). The PAC is believed to act as a mechanical damper offering a fundamental layer of protection against brain injury; however, its overall mechanical properties are still rather unexplored. In order to perform micromechanical measurements on the PAC, the tissue must be extracted and characterized while maintaining its native mechanical properties (i.e., avoiding any chemical or physical modification that could alter it). In light of this need, we developed a protocol for the immunofluorescent staining of fresh PAC tissue that does not require any fixation or permeabilization step. This approach will allow researchers to investigate important properties of the anatomy of ex vivo PAC tissue while at the same time offering a platform for the mechanical analysis of this complex material. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Isolation of fresh rat pia-arachnoid complex tissue Basic Protocol 2: Fresh immunofluorescent staining of rat pia-arachnoid complex tissue Alternate Protocol: Adhesion of pia-arachnoid complex tissue to glass slides for micromechanical characterization.
Collapse
Affiliation(s)
- Zeynep M Suar
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey
| | - Gloria Fabris
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey
| | - Mehmet Kurt
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey.,Translational and Molecular Imaging Institute (TMII), Mount Sinai Hospital, New York, New York
| |
Collapse
|
22
|
Kinman AWL, Pompano RR. Optimization of Enzymatic Antibody Fragmentation for Yield, Efficiency, and Binding Affinity. Bioconjug Chem 2019; 30:800-807. [PMID: 30649877 DOI: 10.1021/acs.bioconjchem.8b00912] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Enzymatic antibody fragmentation has been well studied for various hosts and isotypes, but fragmentation patterns also vary unpredictably by clone, and optimizing Fab or F(ab')2 production by trial and error consumes large quantities of antibodies. Here, we report a systematic strategy for optimizing functional F(ab')2 production via pepsin digestion from small quantities of IgG. We tested three key parameters that affect fragmentation, pH, enzyme concentration (% pepsin w/w), and reaction time, and found that pH had the greatest impact on fragmentation yield and efficiency. We then developed a systematic approach to obtaining acceptable yields, digestion efficiency, and binding affinity. Three case studies are described to illustrate the approach. We anticipate that this work will provide a quick and cost-effective method for researchers to produce antibody fragments from whole IgG, avoiding haphazard trial and error.
Collapse
Affiliation(s)
- Andrew W L Kinman
- Department of Chemistry , University of Virginia , P.O. Box 400319, Charlottesville , Virginia 22904 , United States
| | - Rebecca R Pompano
- Department of Chemistry , University of Virginia , P.O. Box 400319, Charlottesville , Virginia 22904 , United States.,Department of Biomedical Engineering , University of Virginia , Charlottesville , Virginia 22904 , United States
| |
Collapse
|