1
|
Khoshnevisan R, Hassanzadeh S, Klein C, Rohlfs M, Grimbacher B, Molavi N, Zamanifar A, Khoshnevisan A, Jafari M, Bagherpour B, Behnam M, Najafi S, Sherkat R. B-cells absence in patients diagnosed as inborn errors of immunity: a registry-based study. Immunogenetics 2024; 76:189-202. [PMID: 38683392 DOI: 10.1007/s00251-024-01342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/05/2024] [Indexed: 05/01/2024]
Abstract
Hypogammaglobulinemia without B-cells is a subgroup of inborn errors of immunity (IEI) which is characterized by a significant decline in all serum immunoglobulin isotypes, coupled with a pronounced reduction or absence of B-cells. Approximately 80 to 90% of individuals exhibit genetic variations in Bruton's agammaglobulinemia tyrosine kinase (BTK), whereas a minority of cases, around 5-10%, are autosomal recessive agammaglobulinemia (ARA). Very few cases are grouped into distinct subcategories. We evaluated phenotypically and genetically 27 patients from 13 distinct families with hypogammaglobinemia and no B-cells. Genetic analysis was performed via whole-exome and Sanger sequencing. The most prevalent genetic cause was mutations in BTK. Three novel mutations in the BTK gene include c.115 T > C (p. Tyr39His), c.685-686insTTAC (p.Asn229llefs5), and c.163delT (p.Ser55GlnfsTer2). Our three ARA patients include a novel homozygous stop-gain mutation in the immunoglobulin heavy constant Mu chain (IGHM) gene, a novel frameshift mutation of the B-cell antigen receptor complex-associated protein (CD79A) gene, a novel bi-allelic stop-gain mutation in the transcription factor 3 (TCF3) gene. Three patients with agammaglobulinemia have an autosomal dominant inheritance pattern, which includes a missense variant in PIK3CD, a novel missense variant in PIK3R1 and a homozygous silent mutation in the phosphoinositide-3-kinase regulatory subunit (RASGRP1) gene. This study broadens the genetic spectrum of hypogammaglobulinemia without B-cells and presented a few novel variants within the Iranian community, which may also have implications in other Middle Eastern populations. Notably, disease control was better in the second affected family member in families with multiple cases.
Collapse
Affiliation(s)
- Razieh Khoshnevisan
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shakiba Hassanzadeh
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Christoph Klein
- Dr. Von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Meino Rohlfs
- Dept. of Pediatrics, Dr. Von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Bodo Grimbacher
- RESIST-Cluster of Excellence 2155, Hannover Medical School, Hannover, Germany
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
- Clinic for Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
- DZIF-German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signaling Studies, Albert-Ludwigs-University, Freiburg, Germany
| | - Newsha Molavi
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Aryana Zamanifar
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Khoshnevisan
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahbube Jafari
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahram Bagherpour
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdiyeh Behnam
- Medical Genetics Laboratory of Genome, Isfahan, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Somayeh Najafi
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Marakhonov AV, Efimova IY, Mukhina AA, Zinchenko RA, Balinova NV, Rodina Y, Pershin D, Ryzhkova OP, Orlova AA, Zabnenkova VV, Cherevatova TB, Beskorovainaya TS, Shchagina OA, Polyakov AV, Markova ZG, Minzhenkova ME, Shilova NV, Larin SS, Khadzhieva MB, Dudina ES, Kalinina EV, Mudaeva DA, Saydaeva DH, Matulevich SA, Belyashova EY, Yakubovskiy GI, Tebieva IS, Gabisova YV, Irinina NA, Nurgalieva LR, Saifullina EV, Belyaeva TI, Romanova OS, Voronin SV, Shcherbina A, Kutsev SI. Newborn Screening for Severe T and B Cell Lymphopenia Using TREC/KREC Detection: A Large-Scale Pilot Study of 202,908 Newborns. J Clin Immunol 2024; 44:93. [PMID: 38578360 DOI: 10.1007/s10875-024-01691-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
Newborn screening (NBS) for severe inborn errors of immunity (IEI), affecting T lymphocytes, and implementing measurements of T cell receptor excision circles (TREC) has been shown to be effective in early diagnosis and improved prognosis of patients with these genetic disorders. Few studies conducted on smaller groups of newborns report results of NBS that also include measurement of kappa-deleting recombination excision circles (KREC) for IEI affecting B lymphocytes. A pilot NBS study utilizing TREC/KREC detection was conducted on 202,908 infants born in 8 regions of Russia over a 14-month period. One hundred thirty-four newborns (0.66‰) were NBS positive after the first test and subsequent retest, 41% of whom were born preterm. After lymphocyte subsets were assessed via flow cytometry, samples of 18 infants (0.09‰) were sent for whole exome sequencing. Confirmed genetic defects were consistent with autosomal recessive agammaglobulinemia in 1/18, severe combined immunodeficiency - in 7/18, 22q11.2DS syndrome - in 4/18, combined immunodeficiency - in 1/18 and trisomy 21 syndrome - in 1/18. Two patients in whom no genetic defect was found met criteria of (severe) combined immunodeficiency with syndromic features. Three patients appeared to have transient lymphopenia. Our findings demonstrate the value of implementing combined TREC/KREC NBS screening and inform the development of policies and guidelines for its integration into routine newborn screening programs.
Collapse
Affiliation(s)
| | | | - Anna A Mukhina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | | | - Yulia Rodina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Dmitry Pershin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | - Anna A Orlova
- Research Centre for Medical Genetics, Moscow, Russia
| | | | | | | | | | | | | | | | | | - Sergey S Larin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Maryam B Khadzhieva
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ekaterina S Dudina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ekaterina V Kalinina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | - Djamila H Saydaeva
- State Budgetary Institution "Maternity Hospital" of the Ministry of Healthcare of the Chechen Republic, Grozny, Russia
| | | | | | | | - Inna S Tebieva
- North-Ossetian State Medical Academy, Vladikavkaz, Russia
- Republican Childrens Clinical Hospital of the Republic of North Ossetia-Alania, Vladikavkaz, Russia
| | - Yulia V Gabisova
- Republican Childrens Clinical Hospital of the Republic of North Ossetia-Alania, Vladikavkaz, Russia
| | - Nataliya A Irinina
- State Budgetary Healthcare Institution of the Vladimir Region "Regional Clinical Hospital", Vladimir, Russia
| | | | | | - Tatiana I Belyaeva
- Clinical Diagnostic Center "Maternal and Child Health", Yekaterinburg, Russia
| | - Olga S Romanova
- Clinical Diagnostic Center "Maternal and Child Health", Yekaterinburg, Russia
| | | | - Anna Shcherbina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | |
Collapse
|
3
|
Heeger PS, Haro MC, Jordan S. Translating B cell immunology to the treatment of antibody-mediated allograft rejection. Nat Rev Nephrol 2024; 20:218-232. [PMID: 38168662 DOI: 10.1038/s41581-023-00791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 01/05/2024]
Abstract
Antibody-mediated rejection (AMR), including chronic AMR (cAMR), causes ~50% of kidney allograft losses each year. Despite attempts to develop well-tolerated and effective therapeutics for the management of AMR, to date, none has obtained FDA approval, thereby highlighting an urgent unmet medical need. Discoveries over the past decade from basic, translational and clinical studies of transplant recipients have provided a foundation for developing novel therapeutic approaches to preventing and treating AMR and cAMR. These interventions are aimed at reducing donor-specific antibody levels, decreasing graft injury and fibrosis, and preserving kidney function. Innovative approaches emerging from basic science findings include targeting interactions between alloreactive T cells and B cells, and depleting alloreactive memory B cells, as well as donor-specific antibody-producing plasmablasts and plasma cells. Therapies aimed at reducing the cytotoxic antibody effector functions mediated by natural killer cells and the complement system, and their associated pro-inflammatory cytokines, are also undergoing evaluation. The complexity of the pathogenesis of AMR and cAMR suggest that multiple approaches will probably be required to treat these disease processes effectively. Definitive answers await results from large, double-blind, multicentre, randomized controlled clinical trials.
Collapse
Affiliation(s)
- Peter S Heeger
- Comprehensive Transplant Center, Department of Medicine, Division of Nephrology Cedars-Sinai Medical Center Los Angeles, Los Angeles, CA, USA
| | - Maria Carrera Haro
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA
| | - Stanley Jordan
- Comprehensive Transplant Center, Department of Medicine, Division of Nephrology Cedars-Sinai Medical Center Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Fang X, Cui S, Lee H, Min JW, Lim SW, Oh EJ, Yang CW, Shin YJ, Chung BH. Combined Use of Tocilizumab and Mesenchymal Stem Cells Attenuate the Development of an Anti-HLA-A2.1 Antibody in a Highly Sensitized Mouse Model. Int J Mol Sci 2024; 25:1378. [PMID: 38338657 PMCID: PMC10855827 DOI: 10.3390/ijms25031378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/12/2024] Open
Abstract
Sensitization to HLA can result in allograft loss for kidney transplantation (KT) patients. Therefore, it is required to develop an appropriate desensitization (DSZ) technique to remove HLA-donor-specific anti-HLA antibody (DSA) before KT. The aim of this research was to investigate whether combined use of the IL-6 receptor-blocking antibody, tocilizumab (TCZ), and bone-marrow-derived mesenchymal stem cells (BM-MSCs) could attenuate humoral immune responses in an allo-sensitized mouse model developed using HLA.A2 transgenic mice. Wild-type C57BL/6 mice were sensitized with skin allografts from C57BL/6-Tg (HLA-A2.1)1Enge/J mice and treated with TCZ, BM-MSC, or both TCZ and BM-MSC. We compared HLA.A2-specific IgG levels and subsets of T cells and B cells using flow cytometry among groups. HLA.A2-specific IgG level was decreased in all treated groups in comparison with that in the allo-sensitized control (Allo-CONT) group. Its decrease was the most significant in the TCZ + BM-MSC group. Regarding the B cell subset, combined use of TCZ and BM-MSC increased proportions of pre-pro B cells but decreased proportions of mature B cells in BM (p < 0.05 vs. control). In the spleen, an increase in transitional memory was observed with a significant decrease in marginal, follicular, and long-lived plasma B cells (p < 0.05 vs. control) in the TCZ + BM-MSC group. In T cell subsets, Th2 and Th17 cells were significantly decreased, but Treg cells were significantly increased in the TCZ+BM-MSC group compared to those in the Allo-CONT group in the spleen. Regarding RNA levels, IL-10 and Foxp3 showed increased expression, whereas IL-23 and IFN-γ showed decreased expression in the TCZ + BM-MSC group. In conclusion, combined use of TCZ and BM-MSC can inhibit B cell maturation and up-regulate Treg cells, finally resulting in the reduction of HLA.A2-specific IgG in a highly sensitized mouse model. This study suggests that the combined use of TCZ and BM-MSC can be proposed as a novel strategy in a desensitization protocol for highly sensitized patients.
Collapse
Affiliation(s)
- Xianying Fang
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (X.F.); (S.C.); (H.L.); (J.W.M.); (S.W.L.); (E.-J.O.); (C.W.Y.)
| | - Sheng Cui
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (X.F.); (S.C.); (H.L.); (J.W.M.); (S.W.L.); (E.-J.O.); (C.W.Y.)
| | - Hanbi Lee
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (X.F.); (S.C.); (H.L.); (J.W.M.); (S.W.L.); (E.-J.O.); (C.W.Y.)
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ji Won Min
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (X.F.); (S.C.); (H.L.); (J.W.M.); (S.W.L.); (E.-J.O.); (C.W.Y.)
- Division of Nephrology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, Bucheon-si 14647, Republic of Korea
| | - Sun Woo Lim
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (X.F.); (S.C.); (H.L.); (J.W.M.); (S.W.L.); (E.-J.O.); (C.W.Y.)
| | - Eun-Jee Oh
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (X.F.); (S.C.); (H.L.); (J.W.M.); (S.W.L.); (E.-J.O.); (C.W.Y.)
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chul Woo Yang
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (X.F.); (S.C.); (H.L.); (J.W.M.); (S.W.L.); (E.-J.O.); (C.W.Y.)
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yoo Jin Shin
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (X.F.); (S.C.); (H.L.); (J.W.M.); (S.W.L.); (E.-J.O.); (C.W.Y.)
| | - Byung Ha Chung
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (X.F.); (S.C.); (H.L.); (J.W.M.); (S.W.L.); (E.-J.O.); (C.W.Y.)
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|