1
|
Bruneau RC, Tazi L, Rothenburg S. Cowpox Viruses: A Zoo Full of Viral Diversity and Lurking Threats. Biomolecules 2023; 13:325. [PMID: 36830694 PMCID: PMC9953750 DOI: 10.3390/biom13020325] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Cowpox viruses (CPXVs) exhibit the broadest known host range among the Poxviridae family and have caused lethal outbreaks in various zoo animals and pets across 12 Eurasian countries, as well as an increasing number of human cases. Herein, we review the history of how the cowpox name has evolved since the 1700s up to modern times. Despite early documentation of the different properties of CPXV isolates, only modern genetic analyses and phylogenies have revealed the existence of multiple Orthopoxvirus species that are currently constrained under the CPXV designation. We further chronicle modern outbreaks in zoos, domesticated animals, and humans, and describe animal models of experimental CPXV infections and how these can help shaping CPXV species distinctions. We also describe the pathogenesis of modern CPXV infections in animals and humans, the geographic range of CPXVs, and discuss CPXV-host interactions at the molecular level and their effects on pathogenicity and host range. Finally, we discuss the potential threat of these viruses and the future of CPXV research to provide a comprehensive review of CPXVs.
Collapse
Affiliation(s)
| | | | - Stefan Rothenburg
- Department of Medial Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
2
|
Weber S, Jeske K, Ulrich RG, Imholt C, Jacob J, Beer M, Hoffmann D. In Vivo Characterization of a Bank Vole-Derived Cowpox Virus Isolate in Natural Hosts and the Rat Model. Viruses 2020; 12:v12020237. [PMID: 32093366 PMCID: PMC7077282 DOI: 10.3390/v12020237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/04/2022] Open
Abstract
Cowpox virus (CPXV) belongs to the genus Orthopoxvirus in the Poxviridae family and is endemic in western Eurasia. Based on seroprevalence studies in different voles from continental Europe and UK, voles are suspected to be the major reservoir host. Recently, a CPXV was isolated from a bank vole (Myodes glareolus) in Germany that showed a high genetic similarity to another isolate originating from a Cotton-top tamarin (Saguinus oedipus). Here we characterize this first bank vole-derived CPXV isolate in comparison to the related tamarin-derived isolate. Both isolates grouped genetically within the provisionally called CPXV-like 3 clade. Previous phylogenetic analysis indicated that CPXV is polyphyletic and CPXV-like 3 clade represents probably a different species if categorized by the rules used for other orthopoxviruses. Experimental infection studies with bank voles, common voles (Microtusarvalis) and Wistar rats showed very clear differences. The bank vole isolate was avirulent in both common voles and Wistar rats with seroconversion seen only in the rats. In contrast, inoculated bank voles exhibited viral shedding and seroconversion for both tested CPXV isolates. In addition, bank voles infected with the tamarin-derived isolate experienced a marked weight loss. Our findings allow for the conclusion that CPXV isolates might differ in their replication capacity in different vole species and rats depending on their original host. Moreover, the results indicate host-specific differences concerning CPXV-specific virulence. Further experiments are needed to identify individual virulence and host factors involved in the susceptibility and outcome of CPXV-infections in the different reservoir hosts.
Collapse
Affiliation(s)
- Saskia Weber
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (S.W.); (K.J.)
| | - Kathrin Jeske
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (S.W.); (K.J.)
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Christian Imholt
- Vertebrate Research, Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institute, Toppheideweg 88, 48161 Münster, Germany; (C.I.); (J.J.)
| | - Jens Jacob
- Vertebrate Research, Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institute, Toppheideweg 88, 48161 Münster, Germany; (C.I.); (J.J.)
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (S.W.); (K.J.)
- Correspondence: (M.B.); (D.H.); Tel.: +49-38351-7-1200 (M.B.); +49-38351-7-1627 (D.H.)
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (S.W.); (K.J.)
- Correspondence: (M.B.); (D.H.); Tel.: +49-38351-7-1200 (M.B.); +49-38351-7-1627 (D.H.)
| |
Collapse
|
3
|
What a Difference a Gene Makes: Identification of Virulence Factors of Cowpox Virus. J Virol 2020; 94:JVI.01625-19. [PMID: 31645446 DOI: 10.1128/jvi.01625-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 12/25/2022] Open
Abstract
Cowpox virus (CPXV) is a zoonotic orthopoxvirus (OPV) that causes spillover infections from its animal hosts to humans. In 2009, several human CPXV cases occurred through transmission from pet rats. An isolate from a diseased rat, RatPox09, exhibited significantly increased virulence in Wistar rats and caused high mortality compared to that caused by the mildly virulent laboratory strain Brighton Red (BR). The RatPox09 genome encodes four genes which are absent in the BR genome. We hypothesized that their gene products could be major factors influencing the high virulence of RatPox09. To address this hypothesis, we employed several BR-RatPox09 chimeric viruses. Using Red-mediated mutagenesis, we generated BR-based knock-in mutants with single or multiple insertions of the respective RatPox09 genes. High-throughput sequencing was used to verify the genomic integrity of all recombinant viruses, and transcriptomic analyses confirmed that the expression profiles of the genes that were adjacent to the modified ones were unaltered. While the in vitro growth kinetics were comparable to those of BR and RatPox09, we discovered that a knock-in BR mutant containing the four RatPox09-specific genes was as virulent as the RatPox09 isolate, causing death in over 75% of infected Wistar rats. Unexpectedly, the insertion of gCPXV0030 (g7tGP) alone into the BR genome resulted in significantly higher clinical scores and lower survival rates matching the rate for rats infected with RatPox09. The insertion of gCPXV0284, encoding the BTB (broad-complex, tramtrack, and bric-à-brac) domain protein D7L, also increased the virulence of BR, while the other two open reading frames failed to rescue virulence independently. In summary, our results confirmed our hypothesis that a relatively small set of four genes can contribute significantly to CPXV virulence in the natural rat animal model.IMPORTANCE With the cessation of vaccination against smallpox and its assumed cross-protectivity against other OPV infections, waning immunity could open up new niches for related poxviruses. Therefore, the identification of virulence mechanisms in CPXV is of general interest. Here, we aimed to identify virulence markers in an experimental rodent CPXV infection model using bacterial artificial chromosome (BAC)-based virus recombineering. We focused our work on the recent zoonotic CPXV isolate RatPox09, which is highly pathogenic in Wistar rats, unlike the avirulent BR reference strain. In several animal studies, we were able to identify a novel set of CPXV virulence genes. Two of the identified virulence genes, encoding a putative BTB/POZ protein (CPXVD7L) and a B22R-family protein (CPXV7tGP), respectively, have not yet been described to be involved in CPXV virulence. Our results also show that single genes can significantly affect virulence, thus facilitating adaptation to other hosts.
Collapse
|
4
|
Abstract
This chapter discusses infections of rats with viruses in the following 14 virus families: Adenoviridae, Arenaviridae, Coronaviridae, Flaviviridae, Hantaviridae, Hepeviridae, Herpesviridae, Paramyxoviridae, Parvoviridae, Picornaviridae, Pneumoviridae, Polyomaviridae, Poxviridae, and Reoviridae . Serological surveys indicate that parvoviruses, coronaviruses, cardioviruses, and pneumoviruses are the most prevalent in laboratory rats. A new polyomavirus and a new cardiovirus that cause disease in laboratory rats are described. Metagenomic analyses of feces or intestinal contents from wild rats have detected viruses from an additional nine virus families that could potentially cause infections in laboratory rats.
Collapse
|
5
|
Franke A, Ulrich RG, Weber S, Osterrieder N, Keller M, Hoffmann D, Beer M. Experimental Cowpox Virus (CPXV) Infections of Bank Voles: Exceptional Clinical Resistance and Variable Reservoir Competence. Viruses 2017; 9:v9120391. [PMID: 29257111 PMCID: PMC5744165 DOI: 10.3390/v9120391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 01/27/2023] Open
Abstract
Cowpox virus (CPXV) is a zoonotic virus and endemic in wild rodent populations in Eurasia. Serological surveys in Europe have reported high prevalence in different vole and mouse species. Here, we report on experimental CPXV infections of bank voles (Myodes glareolus) from different evolutionary lineages with a spectrum of CPXV strains. All bank voles, independently of lineage, sex and age, were resistant to clinical signs following CPXV inoculation, and no virus shedding was detected in nasal or buccal swabs. In-contact control animals became only rarely infected. However, depending on the CPXV strain used, inoculated animals seroconverted and viral DNA could be detected preferentially in the upper respiratory tract. The highest antibody titers and virus DNA loads in the lungs were detected after inoculation with two strains from Britain and Finland. We conclude from our experiments that the role of bank voles as an efficient and exclusive CPXV reservoir seems questionable, and that CPXV may be maintained in most regions by other hosts, including other vole species. Further investigations are needed to identify factors that allow and modulate CPXV maintenance in bank voles and other potential reservoirs, which may also influence spill-over infections to accidental hosts.
Collapse
Affiliation(s)
- Annika Franke
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany.
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany.
| | - Saskia Weber
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany.
| | | | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany.
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
6
|
Filippova EI. Antiviral Activity of Lady's Mantle (Alchemilla vulgaris L.) Extracts against Orthopoxviruses. Bull Exp Biol Med 2017; 163:374-377. [PMID: 28744637 DOI: 10.1007/s10517-017-3807-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Indexed: 11/24/2022]
Abstract
We studied toxicity and antiviral activity of bioactive substances extracted from the roots (ethylacetate extracts) and aerial parts (ethanol extracts) of lady's mantle (Alchemilla vilgaris L.). Plant extracts are characterized by low toxicity for continuous Vero cell culture, but inhibit the reproduction of orthopoxviruses (vaccinia virus and ectromelia virus) in these cells. Of all studied extracts, ethylacetate extract from lady's mantle roots characterized by the highest content of catechins in comparison with other samples demonstrated the highest activity in vitro towards the studied viruses (neutralization index for vaccinia and ectromelia viruses were 4.0 and 3.5 lg, respectively). The antiviral effect of Alchemilla vulgaris L. extracts was shown to be dose dependent.
Collapse
Affiliation(s)
- E I Filippova
- Vector State Research Center of Virology and Biotechnology, Koltso-vo, Novosibirsk region, Russia.
| |
Collapse
|
7
|
Gazzani P, Gach JE, Colmenero I, Martin J, Morton H, Brown K, Milford DV. Fatal disseminated cowpox virus infection in an adolescent renal transplant recipient. Pediatr Nephrol 2017; 32:533-536. [PMID: 27796621 DOI: 10.1007/s00467-016-3534-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 09/17/2016] [Accepted: 10/04/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND A 17-year-old boy on long-term immunosuppression following renal transplantation for chronic kidney disease (CKD), the result of dysplastic kidneys, initially presented with a swelling in his neck while attending hospital for an unrelated problem. A clinical diagnosis of tonsillitis was made, and he was treated with broad-spectrum antibiotics. Over a few days, his condition deteriorated, and he developed multiple vesicopustular skin lesions and required an emergency tonsillectomy due to respiratory distress. CASE DIAGNOSIS/TREATMENT Histological investigation of the skin and tonsillar tissue suggested a viral aetiology, and subsequent electron microscopy and polymerase chain reaction (PCR) tissue examination proved disseminated cowpox infection. The family cat, which was reported as having self-resolving sores on its skin, was likely the source of the infection. The child failed to respond to antiviral treatment and succumbed to multiorgan failure within a month of admission. CONCLUSIONS We report this case of fatal disseminated cowpox infection to highlight an increasing risk of this illness in the post-transplant population and to detail some unusual features not previously described, such as tonsillar involvement, disseminated skin lesions and multiorgan failure.
Collapse
Affiliation(s)
- Paul Gazzani
- Dermatology Department, Birmingham Children's Hospital, Birmingham, UK.
| | - Joanna E Gach
- Dermatology Department, Birmingham Children's Hospital, Birmingham, UK
| | - Isabel Colmenero
- Histopathology Department, Birmingham Children's Hospital, Birmingham, UK
| | - Jeff Martin
- Intensive Care Department, Birmingham Children's Hospital, Birmingham, UK
| | - Hugh Morton
- Microbiology Department, Worcestershire Royal Hospital, Worcester, UK
| | - Kevin Brown
- Virus Reference Department, Public Health England, London, UK
| | - David V Milford
- Nephrology Department, Birmingham Children's Hospital, Birmingham, UK
| |
Collapse
|
8
|
Heuser E, Fischer S, Ryll R, Mayer-Scholl A, Hoffmann D, Spahr C, Imholt C, Alfa DM, Fröhlich A, Lüschow D, Johne R, Ehlers B, Essbauer S, Nöckler K, Ulrich RG. Survey for zoonotic pathogens in Norway rat populations from Europe. PEST MANAGEMENT SCIENCE 2017; 73:341-348. [PMID: 27299665 DOI: 10.1002/ps.4339] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND The Norway rat Rattus norvegicus is an important reservoir of various zoonotic pathogens, such as cowpox virus and Leptospira, but also for agents of no or unknown zoonotic potential. We describe a survey of 426 Norway rats originating from five European countries and different habitats for Leptospira spp., rickettsiae, orthopoxvirus (OPV), avian metapneumovirus subtypes A and B (aMPV) and rat polyomavirus (rat PyV). RESULTS Leptospira DNA was detected in 60 out of 420 (14.3%) rats, and Rickettsia DNA was found in three out of 369 (0.8%) rats investigated. PCR-based typing resulted in the identification of L. interrogans sequence type 17, which corresponds to the serogroup Icterohaemorrhagiae, and Rickettsia helvetica respectively. Rat PyV DNA was detected in 103 out of 421 (24.5%) rats. OPV DNA and aMPV RNA were detected in none of the rats, but OPV-specific antibodies were detected in three out of 388 (0.8%) rats. The frequency of single Leptospira and rat PyV infections and coinfections was, independent of sex, greater for adults compared with juveniles/subadults and greater at rural sites compared with urban areas. CONCLUSIONS Study results indicate a broad geographical distribution of Leptospira DNA in rats within Europe, underlining the need to investigate further the potential mechanisms leading to increased prevalence in rural habitats and to assess the relevance to public health. In contrast, rickettsia and OPV infections rarely occurred in wild rat populations. The potential influence of rat PyV on the susceptibility to infections with other pathogens should be investigated in future studies. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Elisa Heuser
- Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Stefan Fischer
- Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - René Ryll
- Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | | | - Donata Hoffmann
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | - Carina Spahr
- Federal Institute for Risk Assessment, Berlin, Germany
| | - Christian Imholt
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forestry, Vertebrate Research, Münster, Germany
| | - Dewi Murni Alfa
- Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Andreas Fröhlich
- Friedrich-Loeffler-Institut, Institute of Epidemiology, Greifswald-Insel Riems, Germany
| | - Dörte Lüschow
- Freie Universität Berlin, Department of Veterinary Medicine, Institute of Poultry Diseases, Berlin, Germany
| | - Reimar Johne
- Federal Institute for Risk Assessment, Berlin, Germany
| | | | | | | | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
- German Centre for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel-Insel Riems, Germany
| |
Collapse
|
9
|
Tamošiūnaitė A, Hoffmann D, Franke A, Schluckebier J, Tauscher K, Tischer BK, Beer M, Klopfleisch R, Osterrieder N. Histopathological and Immunohistochemical Studies of Cowpox Virus Replication in a Three-Dimensional Skin Model. J Comp Pathol 2016; 155:55-61. [PMID: 27291992 DOI: 10.1016/j.jcpa.2016.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/18/2016] [Accepted: 05/04/2016] [Indexed: 11/26/2022]
Abstract
Human cowpox virus (CPXV) infections are rare, but can result in severe and sometimes fatal outcomes. The majority of recent cases were traced back to contacts with infected domestic cats or pet rats. The aim of the present study was to evaluate a three-dimensional (3D) skin model as a possible replacement for animal experiments. We monitored CPXV lesion formation, viral gene expression and cell cycle patterns after infection of 3D skin cultures with two CPXV strains of different pathogenic potential: a recent pet rat isolate (RatPox09) and the reference Brighton red strain. Infected 3D skin cultures exhibited histological alterations that were similar to those of mammal skin infections, but there were no differences in gene expression patterns and tissue damage between the two CPXV strains in the model system. In conclusion, 3D skin cultures reflect the development of pox lesions in the skin very well, but seem not to allow differentiation between more or less virulent virus strains, a distinction that is made possible by experimental infection in suitable animal models.
Collapse
Affiliation(s)
- A Tamošiūnaitė
- Institut für Virologie, Freie Universität Berlin, Zentrum für Infektionsmedizin, Berlin, Germany
| | - D Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems, Germany
| | - A Franke
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems, Germany
| | - J Schluckebier
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems, Germany
| | - K Tauscher
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institute, Südufer 10, Greifswald-Insel Riems, Germany
| | - B K Tischer
- Institut für Virologie, Freie Universität Berlin, Zentrum für Infektionsmedizin, Berlin, Germany
| | - M Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems, Germany
| | - R Klopfleisch
- Institute for Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - N Osterrieder
- Institut für Virologie, Freie Universität Berlin, Zentrum für Infektionsmedizin, Berlin, Germany.
| |
Collapse
|
10
|
Out of the Reservoir: Phenotypic and Genotypic Characterization of a Novel Cowpox Virus Isolated from a Common Vole. J Virol 2015; 89:10959-69. [PMID: 26311891 DOI: 10.1128/jvi.01195-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/13/2015] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED The incidence of human cowpox virus (CPXV) infections has increased significantly in recent years. Serological surveys have suggested wild rodents as the main CPXV reservoir. We characterized a CPXV isolated during a large-scale screening from a feral common vole. A comparison of the full-length DNA sequence of this CPXV strain with a highly virulent pet rat CPXV isolate showed a sequence identity of 96%, including a large additional open reading frame (ORF) of about 6,000 nucleotides which is absent in the reference CPXV strain Brighton Red. Electron microscopy analysis demonstrated that the vole isolate, in contrast to the rat strain, forms A-type inclusion (ATI) bodies with incorporated virions, consistent with the presence of complete ati and p4c genes. Experimental infections showed that the vole CPXV strain caused only mild clinical symptoms in its natural host, while all rats developed severe respiratory symptoms followed by a systemic rash. In contrast, common voles infected with a high dose of the rat CPXV showed severe signs of respiratory disease but no skin lesions, whereas infection with a low dose led to virus excretion with only mild clinical signs. We concluded that the common vole is susceptible to infection with different CPXV strains. The spectrum ranges from well-adapted viruses causing limited clinical symptoms to highly virulent strains causing severe respiratory symptoms. In addition, the low pathogenicity of the vole isolate in its eponymous host suggests a role of common voles as a major CPXV reservoir, and future research will focus on the correlation between viral genotype and phenotype/pathotype in accidental and reservoir species. IMPORTANCE We report on the first detection and isolation of CPXV from a putative reservoir host, which enables comparative analyses to understand the infection cycle of these zoonotic orthopox viruses and the relevant genes involved. In vitro studies, including whole-genome sequencing as well as in vivo experiments using the Wistar rat model and the vole reservoir host allowed us to establish links between genomic sequences and the in vivo properties (virulence) of the novel vole isolate in comparison to those of a recent zoonotic CPXV isolated from pet rats in 2009. Furthermore, the role of genes present only in a reservoir isolate can now be further analyzed. These studies therefore allow unique insights and conclusions about the role of the rodent reservoir in CPXV epidemiology and transmission and about the zoonotic threat that these viruses represent.
Collapse
|
11
|
Halsby KD, Walsh AL, Campbell C, Hewitt K, Morgan D. Healthy animals, healthy people: zoonosis risk from animal contact in pet shops, a systematic review of the literature. PLoS One 2014; 9:e89309. [PMID: 24586679 PMCID: PMC3935869 DOI: 10.1371/journal.pone.0089309] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 01/22/2014] [Indexed: 12/02/2022] Open
Abstract
Background Around 67 million pets are owned by households in the United Kingdom, and an increasing number of these are exotic animals. Approximately a third of pets are purchased through retail outlets or direct from breeders. A wide range of infections can be associated with companion animals. Objectives This study uses a systematic literature review to describe the transmission of zoonotic disease in humans associated with a pet shop or other location selling pets (incidents of rabies tracebacks and zoonoses from pet food were excluded). Data sources PubMed and EMBASE. Results Fifty seven separate case reports or incidents were described in the 82 papers that were identified by the systematic review. Summary information on each incident is included in this manuscript. The infections include bacterial, viral and fungal diseases and range in severity from mild to life threatening. Infections associated with birds and rodents were the most commonly reported. Over half of the reports describe incidents in the Americas, and three of these were outbreaks involving more than 50 cases. Many of the incidents identified relate to infections in pet shop employees. Limitations This review may have been subject to publication bias, where unusual and unexpected zoonotic infections may be over-represented in peer-reviewed publications. It was also restricted to English-language articles so that pathogens that are more common in non-Western countries, or in more exotic animals not common in Europe and the Americas, may have been under-represented. Conclusions/implications A wide spectrum of zoonotic infections are acquired from pet shops. Salmonellosis and psittacosis were the most commonly documented diseases, however more unusual infections such as tularemia also appeared in the review. Given their potential to spread zoonotic infection, it is important that pet shops act to minimise the risk as far as possible.
Collapse
Affiliation(s)
- Kate D. Halsby
- Gastrointestinal, Emerging and Zoonotic Infections Department, Public Health England, London, United Kingdom,
- * E-mail:
| | - Amanda L. Walsh
- Gastrointestinal, Emerging and Zoonotic Infections Department, Public Health England, London, United Kingdom,
| | - Colin Campbell
- Centre for the Epidemiological Study of Sexually Transmitted Infections and AIDS of Catalonia (CEEISCAT) – ICO, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Kirsty Hewitt
- Gastrointestinal, Emerging and Zoonotic Infections Department, Public Health England, London, United Kingdom,
- London/KSS Specialty School of Public Health, London Deanery, London, United Kingdom
| | - Dilys Morgan
- Gastrointestinal, Emerging and Zoonotic Infections Department, Public Health England, London, United Kingdom,
| |
Collapse
|
12
|
KAY-2-41, a novel nucleoside analogue inhibitor of orthopoxviruses in vitro and in vivo. Antimicrob Agents Chemother 2013; 58:27-37. [PMID: 24126587 DOI: 10.1128/aac.01601-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The availability of adequate treatments for poxvirus infections would be valuable not only for human use but also for veterinary use. In the search for novel antiviral agents, a 1'-methyl-substituted 4'-thiothymidine nucleoside, designated KAY-2-41, emerged as an efficient inhibitor of poxviruses. In vitro, KAY-2-41 was active in the micromolar range against orthopoxviruses (OPVs) and against the parapoxvirus orf. The compound preserved its antiviral potency against OPVs resistant to the reference molecule cidofovir. KAY-2-41 had no noticeable toxicity on confluent monolayers, but a cytostatic effect was seen on growing cells. Genotyping of vaccinia virus (VACV), cowpox virus, and camelpox virus selected for resistance to KAY-2-41 revealed a nucleotide deletion(s) close to the ATP binding site or a nucleotide substitution close to the substrate binding site in the viral thymidine kinase (TK; J2R) gene. These mutations resulted in low levels of resistance to KAY-2-41 ranging from 2.7- to 6.0-fold and cross-resistance to 5-bromo-2'-deoxyuridine (5-BrdU) but not to cidofovir. The antiviral effect of KAY-2-41 relied, at least in part, on activation (phosphorylation) by the viral TK, as shown through enzymatic assays. The compound protected animals from disease and mortality after a lethal challenge with VACV, reduced viral loads in the serum, and abolished virus replication in tissues. In conclusion, KAY-2-41 is a promising nucleoside analogue for the treatment of poxvirus-induced diseases. Our findings warrant the evaluation of additional 1'-carbon-substituted 4'-thiothymidine derivatives as broad-spectrum antiviral agents, since this molecule also showed antiviral potency against herpes simplex virus 1 in earlier studies.
Collapse
|
13
|
Tack DM, Reynolds MG. Zoonotic Poxviruses Associated with Companion Animals. Animals (Basel) 2011; 1:377-95. [PMID: 26486622 PMCID: PMC4513476 DOI: 10.3390/ani1040377] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/02/2011] [Accepted: 11/15/2011] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Contemporary enthusiasm for the ownership of exotic animals and hobby livestock has created an opportunity for the movement of poxviruses—such as monkeypox, cowpox, and orf—outside their traditional geographic range bringing them into contact with atypical animal hosts and groups of people not normally considered at risk. It is important that pet owners and practitioners of human and animal medicine develop a heightened awareness for poxvirus infections and understand the risks that can be associated with companion animals and livestock. This article reviews the epidemiology and clinical features of zoonotic poxviruses that are most likely to affect companion animals. Abstract Understanding the zoonotic risk posed by poxviruses in companion animals is important for protecting both human and animal health. The outbreak of monkeypox in the United States, as well as current reports of cowpox in Europe, point to the fact that companion animals are increasingly serving as sources of poxvirus transmission to people. In addition, the trend among hobbyists to keep livestock (such as goats) in urban and semi-urban areas has contributed to increased parapoxvirus exposures among people not traditionally considered at high risk. Despite the historic notoriety of poxviruses and the diseases they cause, poxvirus infections are often missed. Delays in diagnosing poxvirus-associated infections in companion animals can lead to inadvertent human exposures. Delays in confirming human infections can result in inappropriate treatment or prolonged recovery. Early recognition of poxvirus-associated infections and application of appropriate preventive measures can reduce the spread of virus between companion animals and their owners. This review will discuss the epidemiology and clinical features associated with the zoonotic poxvirus infections most commonly associated with companion animals.
Collapse
Affiliation(s)
- Danielle M Tack
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | - Mary G Reynolds
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| |
Collapse
|