1
|
Nesaraj J, Grinberg A, Laven R, Biggs P. Genomic epidemiology of bovine mastitis-causing Staphylococcus aureus in New Zealand. Vet Microbiol 2023; 282:109750. [PMID: 37099864 DOI: 10.1016/j.vetmic.2023.109750] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 04/28/2023]
Abstract
We analysed the genomes of 188 bovine-mastitis-causing S. aureus isolates obtained over a 17-year period from more than 65 dairy farms across New Zealand. The analysis revealed a unique pattern of dominance over the entire period of study, of clonal complex 1, sequence type 1 (CC1/ST1), which accounted for ∼75% of the isolates. CC1/ST1 was also the commonest lineage infecting humans in New Zealand in the same period, but most bovine CC1/ST1 analysed in this study carried the genes coding for the bovine-adaptive bicomponent leucocidin lukF and lukM and lacked the corresponding human-adaptive lukF-PV and lukS-PV genes. Typical ruminant-associated lineages, such as ST97, ST151 and CC133 were also observed. Cluster analyses of the core and accessory genomes revealed genomic segregations according to the CCs, but lack of segregation based on the geographical location or collection year, suggesting a stable population in space and time. To our knowledge, this is the first identification of genomic markers of host adaptation to cattle in S. aureus CC1/ST1, a lineage commonly associated with humans, worldwide. The temporal clonal stability observed would enable the development of a S. aureus vaccine for New Zealand cattle, which is unlikely to undergo substantial reduction of efficacy due to clonal drifts or shifts.
Collapse
Affiliation(s)
- Jabin Nesaraj
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North 4474, New Zealand
| | - Alex Grinberg
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North 4474, New Zealand.
| | - Richard Laven
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North 4474, New Zealand
| | - Patrick Biggs
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North 4474, New Zealand
| |
Collapse
|
2
|
Coombs GW, Yee NWT, Daley D, Bennett CM, Robinson JO, Stegger M, Shoby P, Mowlaboccus S. Molecular Epidemiology of Penicillin-Susceptible Staphylococcus aureus Bacteremia in Australia and Reliability of Diagnostic Phenotypic Susceptibility Methods to Detect Penicillin Susceptibility. Microorganisms 2022; 10:microorganisms10081650. [PMID: 36014068 PMCID: PMC9413241 DOI: 10.3390/microorganisms10081650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Defined by the emergence of antibiotic resistant strains, Staphylococcus aureus is a priority bacterial species with high antibiotic resistance. However, a rise in the prevalence of penicillin-susceptible S. aureus (PSSA) bloodstream infections has recently been observed worldwide, including in Australia, where the proportion of methicillin-susceptible S. aureus causing bacteremia identified phenotypically as penicillin-susceptible has increased by over 35%, from 17.5% in 2013 to 23.7% in 2020. Objectives: To determine the population structure of PSSA causing community- and hospital-onset bacteremia in Australia and to evaluate routine phenotypic antimicrobial susceptibility methods to reliably confirm penicillin resistance on blaZ-positive S. aureus initially classified as penicillin-susceptible by the Vitek® 2 automated microbiology system. Results: Whole genome sequencing on 470 PSSA collected in the 2020 Australian Group on Antimicrobial Resistance Australian Staphylococcus aureus Sepsis Outcome Programme identified 84 multilocus sequence types (STs), of which 79 (463 isolates) were grouped into 22 clonal complexes (CCs). The dominant CCs included CC5 (31.9%), CC97 (10.2%), CC45 (10.0%), CC15 (8.7%), and CC188 (4.9%). Many of the CCs had multiple STs and spa types and, based on the immune evasion cluster type, isolates within a CC could be classified into different strains harboring a range of virulence and resistance genes. Phylogenetic analyses of the isolates showed most CCs were represented by one clade. The blaZ gene was identified in 45 (9.6%) PSSA. Although multiclonal, approximately 50% of blaZ-positive PSSA were from CC15 and were found to be genetically distant from the blaZ-negative CC15 PSSA. The broth microdilution, Etest® and cefinase, performed poorly; however, when the appearance of the zone edge was considered; as per the EUCAST and CLSI criteria, disc diffusion detected 100% of blaZ-positive PSSA. Conclusions: In Australia, PSSA bacteremia is not caused by the expansion of a single clone. Approximately 10% of S. aureus classified as penicillin-susceptible by the Vitek® 2 harbored blaZ. Consequently, we recommend that confirmation of Vitek® 2 PSSA be performed using an alternative method, such as disc diffusion with careful interpretation of the zone edge.
Collapse
Affiliation(s)
- Geoffrey W. Coombs
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, WA 6150, Australia
- Department of Microbiology, PathWest Laboratory Medicine-WA, Fiona Stanley Hospital, Murdoch, WA 6150, Australia
| | - Nicholas W. T. Yee
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, WA 6150, Australia
| | - Denise Daley
- Department of Microbiology, PathWest Laboratory Medicine-WA, Fiona Stanley Hospital, Murdoch, WA 6150, Australia
| | - Catherine M. Bennett
- Institute of Health Transformation, Deakin University, Melbourne, VIC 3125, Australia
| | - James O. Robinson
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, WA 6150, Australia
- Department of Microbiology, PathWest Laboratory Medicine-WA, Fiona Stanley Hospital, Murdoch, WA 6150, Australia
- Department of Infectious Diseases, Fiona Stanley Hospital, Murdoch, WA 6150, Australia
- Department of Infectious Diseases, Royal Perth Hospital, Perth, WA 6003, Australia
| | - Marc Stegger
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, WA 6150, Australia
- Department of Bacteria, Parasites and Fungi, Statens Serum Institute, 2300 Copenhagen, Denmark
| | - Princy Shoby
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, WA 6150, Australia
| | - Shakeel Mowlaboccus
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, WA 6150, Australia
- Department of Microbiology, PathWest Laboratory Medicine-WA, Fiona Stanley Hospital, Murdoch, WA 6150, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- Correspondence:
| |
Collapse
|
3
|
Zhang L, Zhang D, Tang H, Zhu Y, Liu H, Yu R. Bacteria Wear ICG Clothes for Rapid Detection of Intracranial Infection in Patients After Neurosurgery and Photothermal Antibacterial Therapy Against Streptococcus Mutans. Front Bioeng Biotechnol 2022; 10:932915. [PMID: 35875493 PMCID: PMC9298881 DOI: 10.3389/fbioe.2022.932915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Bacterial infection is one of the most serious physiological conditions threatening human health. There is an increasing demand for more effective bacterial diagnosis and treatment through non-invasive approaches. Among current antibacterial strategies of non-invasive approaches, photothermal antibacterial therapy (PTAT) has pronounced advantages with properties of minor damage to normal tissue and little chance to trigger antimicrobial resistance. Therefore, we developed a fast and simple strategy that integrated the sensitive detection and photothermal therapy of bacteria by measuring adenosine triphosphate (ATP) bioluminescence following targeted photothermal lysis. First, 3-azido-d-alanine (d-AzAla) is selectively integrated into the cell walls of bacteria, photosensitizer dibenzocyclooctyne, and double sulfonic acid-modified indocyanine green (sulfo-DBCO-ICG) are subsequently designed to react with the modified bacteria through in vivo click chemistry. Next, the sulfo-DBCO-ICG modified bacteria under irradiation of 808 nm near-infrared laser was immediately detected by ATP bioluminescence following targeted photothermal lysis and even the number of bacteria on the infected tissue can be significantly reduced through PTAT. This method has demonstrated the ability to detect the presence of the bacteria for ATP value in 32 clinical samples. As a result, the ATP value over of 100 confirmed the presence of bacteria in clinical samples for 22 patients undergoing craniotomy and ten otitis media patients. Overall, this study paves a brand new avenue to facile diagnosis and a treatment platform for clinical bacterial infections.
Collapse
Affiliation(s)
- Long Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Deyun Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Hai Tang
- Epilepsy Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yufu Zhu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hongmei Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
4
|
Kaiser-Thom S, Gerber V, Collaud A, Hurni J, Perreten V. Prevalence and WGS-based characteristics of Staphylococcus aureus in the nasal mucosa and pastern of horses with equine pastern dermatitis. BMC Vet Res 2022; 18:79. [PMID: 35209904 PMCID: PMC8867626 DOI: 10.1186/s12917-021-03053-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/18/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Many contributing factors are involved in the development of equine pastern dermatitis (EPD). Among the most frequently suspected is Staphylococcus aureus, known for its pathogenic potential in skin and soft tissue infections. We therefore investigated the association between S. aureus carriage and EPD. RESULTS One hundred five EPD-affected horses and 95 unaffected controls were examined for the presence of methicillin-resistant and -susceptible Staphylococcus aureus (MRSA and MSSA) on the pastern skin and in the nostrils. S. aureus isolates were cultivated from swab samples on selective MSSA and MRSA chromogenic agar and identified using MALDI-TOF MS. Isolates were analysed by Illumina whole genome sequencing for genetic relatedness (cgMLST, spa typing), and for the presence of antimicrobial resistance and virulence determinants. A markedly higher proportion of samples from EPD-affected horses proved positive for S. aureus, both from the pastern (59.0 % vs. 6.3 % in unaffected horses; P<0.001), and from the nose (59.0 % vs. 8.4 %; P<0.001). Isolates belonged to 20 sequence types (ST) with lineages ST15-t084 (spa) (18 %), ST1-t127 (13 %), and ST1-t1508 (12 %) being predominant. Eight S. aureus were MRSA ST398-t011 and ST6239-t1456, and contained the staphylococcal cassette chromosome SCCmecIVa. Antimicrobial resistance genes were almost equally frequent in pastern and in nasal samples, whereas some virulence factors such as the beta-hemolysin, ESAT-6 secretion system, and some enterotoxins were more abundant in isolates from pastern samples, possibly enhancing their pathogenic potential. CONCLUSIONS The markedly higher prevalence of S. aureus containing specific virulence factors in affected skin suggests their contribution in the development and course of EPD.
Collapse
Affiliation(s)
- Sarah Kaiser-Thom
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty, Swiss Institute of Equine Medicine (ISME), University of Bern, and Agroscope, Bern, Switzerland
| | - Vinzenz Gerber
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty, Swiss Institute of Equine Medicine (ISME), University of Bern, and Agroscope, Bern, Switzerland
| | - Alexandra Collaud
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Joel Hurni
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty, Swiss Institute of Equine Medicine (ISME), University of Bern, and Agroscope, Bern, Switzerland.,Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Vincent Perreten
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Epi-Gene: An R-Package for Easy Pan-Genome Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5585586. [PMID: 34595238 PMCID: PMC8478537 DOI: 10.1155/2021/5585586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/28/2021] [Indexed: 11/18/2022]
Abstract
The main aim of this study was to develop a set of functions that can analyze the genomic data with less time consumption and memory. Epi-gene is presented as a solution to large sequence file handling and computational time problems. It uses less time and less programming skills in order to work with a large number of genomes. In the current study, some features of the Epi-gene R-package were described and illustrated by using a dataset of the 14 Aeromonas hydrophila genomes. The joining, relabeling, and conversion functions were also included in this package to handle the FASTA formatted sequences. To calculate the subsets of core genes, accessory genes, and unique genes, various Epi-gene functions have been used. Heat maps and phylogenetic genome trees were also constructed. This whole procedure was completed in less than 30 minutes. This package can only work on Windows operating systems. Different functions from other packages such as dplyr and ggtree were also used that were available in R computing environment.
Collapse
|
6
|
Carriage and population genetics of extended spectrum β-lactamase-producing Escherichia coli in cats and dogs in New Zealand. Vet Microbiol 2019; 233:61-67. [PMID: 31176414 DOI: 10.1016/j.vetmic.2019.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
Abstract
The incidence of infections with extended spectrum β-lactamase producing Escherichia coli (ESBL-E) is increasing both in humans and animals. There is a paucity of data about the rate of faecal carriage of ESBL-E in pets. In this study, faecal swabs collected from 586 pets (225 cats; 361 dogs) in Auckland, New Zealand, were analysed for the presence of ESBL-E by culture, and a questionnaire was delivered to the owners. The ESBL-E were characterised and data elicited by the questionnaires were used for a multivariable analysis, to investigate the factors associated with faecal ESBL-E carriage. The prevalence of ESBL-E in faecal swabs was 6.4%. The β-lactamase genes detected in the ESBL-E were the blaCTX-M-14 (n = 2) and blaCMY-2 (n = 34). Several isolates displayed multilocus sequence types (ST) associated with human and animal infections. Multiple isolates sharing the same ST displayed different antibiograms and β-lactamase genes, reflecting horizontal gene transfer between and within ST. Variables independently associated with increased odds of ESBL-E carriage were: animal received systemic antimicrobial treatment in the six months before the sampling; presence of household members working in veterinary clinics; presence of household members travelling overseas in the six months before the sampling. We conclude that pets are colonised by ESBL-E which are genotypically similar to the bacteria found to infect humans and animals. The statistical analysis suggested a number of eco-epidemiological factors associated with ESBL-E carriage. In particular, they suggest veterinary clinics may represent hot-spots of antimicrobial resistance.
Collapse
|
7
|
Park CJ, Andam CP. Within-Species Genomic Variation and Variable Patterns of Recombination in the Tetracycline Producer Streptomyces rimosus. Front Microbiol 2019; 10:552. [PMID: 30949149 PMCID: PMC6437091 DOI: 10.3389/fmicb.2019.00552] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/04/2019] [Indexed: 01/09/2023] Open
Abstract
Streptomyces rimosus is best known as the primary source of the tetracycline class of antibiotics, most notably oxytetracycline, which have been widely used against many gram-positive and gram-negative pathogens and protozoan parasites. However, despite the medical and agricultural importance of S. rimosus, little is known of its evolutionary history and genome dynamics. In this study, we aim to elucidate the pan-genome characteristics and phylogenetic relationships of 32 S. rimosus genomes. The S. rimosus pan-genome contains more than 22,000 orthologous gene clusters, and approximately 8.8% of these genes constitutes the core genome. A large part of the accessory genome is composed of 9,646 strain-specific genes. S. rimosus exhibits an open pan-genome (decay parameter α = 0.83) and high gene diversity between strains (genomic fluidity φ = 0.12). We also observed strain-level variation in the distribution and abundance of biosynthetic gene clusters (BGCs) and that each individual S. rimosus genome has a unique repertoire of BGCs. Lastly, we observed variation in recombination, with some strains donating or receiving DNA more often than others, strains that tend to frequently recombine with specific partners, genes that often experience recombination more than others, and variable sizes of recombined DNA sequences. We conclude that the high levels of inter-strain genomic variation in S. rimosus is partly explained by differences in recombination among strains. These results have important implications on current efforts for natural drug discovery, the ecological role of strain-level variation in microbial populations, and addressing the fundamental question of why microbes have pan-genomes.
Collapse
Affiliation(s)
- Cooper J Park
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Cheryl P Andam
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
8
|
Suen LKP, Siu GKH, Guo YP, Yeung SKW, Lo KYK, O’Donoghue M. The public washroom - friend or foe? An observational study of washroom cleanliness combined with microbiological investigation of hand hygiene facilities. Antimicrob Resist Infect Control 2019; 8:47. [PMID: 30867901 PMCID: PMC6396476 DOI: 10.1186/s13756-019-0500-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
Background Many people use handwashing and hand-drying facilities in public washrooms under the impression that these amenities are hygienic. However, such facilities may be potential sites for the transmission of pathogenic bacteria. This study aimed to examine the hygiene facilities provided including handwashing and hand-drying facilities in public washrooms. Total bacterial counts and species identification were determined for hand-drying facilities. Antimicrobial susceptibilities were performed. Methods The bacterial contamination levels of 55 public washrooms ranging in category from low class communities to high end establishments, were examined. The hygienic environment and facilities of the washrooms were analysed using an electronic checklist to facilitate immediate data entry. Pre-moistened sterile swabs were used to collect samples from areas around the outlet of paper towel dispensers, air outlet of air dryers, exit door handles and paper towels in the washrooms. Total bacterial counts were performed and isolates identified using matrix-assisted laser desorption ionisation time-of-flight mass spectrometry. Antimicrobial susceptibility was determined by disk diffusion. Results The high and middle-income categories washrooms generally had cleaner facilities and environment followed by those in low categories. Fifty-two bacterial species were identified from the 55 investigated washrooms. Over 97% of the pathogenic Staphylococcus spp. tested were resistant to at least one first-line antimicrobial therapeutic agent, including penicillin, cefoxitin, erythromycin, co-trimoxazole, clindamycin and gentamicin, and 22.6% demonstrated co-resistance to at least three antimicrobial agents, with co-resistance to penicillin, erythromycin and clindamycin being the most common. Conclusion Our findings suggest that hand-drying facilities in public washrooms can act as reservoirs of drug-resistant bacteria. The importance of frequent cleaning and maintenance of public washrooms to promote safe hand hygiene practices for the public are emphasised.
Collapse
Affiliation(s)
- Lorna K. P. Suen
- School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR China
| | - Gilman K. H. Siu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR China
| | - Yue Ping Guo
- School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR China
| | - Simon K. W. Yeung
- School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR China
| | - Kiki Y. K. Lo
- School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR China
| | - Margaret O’Donoghue
- School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR China
| |
Collapse
|
9
|
Protective immunity in recurrent Staphylococcus aureus infection reflects localized immune signatures and macrophage-conferred memory. Proc Natl Acad Sci U S A 2018; 115:E11111-E11119. [PMID: 30297395 DOI: 10.1073/pnas.1808353115] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus is the leading cause of skin and skin structure infection (SSSI), a primary portal of entry for invasive infection. Our prior studies discovered a role for protective innate memory against recurrent methicillin-resistant S. aureus (MRSA) SSSI. In the present study, the dynamics and mechanisms of this response were explored in recurrent SSSI in WT mice. Priming by prior infection reduced skin lesion severity and MRSA burden, and protected against dissemination at day 7 but not day 2. Cytokine and cellular signatures in SSSI differed at day 2 versus 7, and were distinct in skin versus blood or spleen. Cytokines associated with protection in skin included increased IL-17, IL-6, monokine inducible by IFN-γ (MIG), and RANTES, while increased IP-10 correlated with protection from dissemination. Cellular signatures of protection included increased Th17, M1 macrophage, and dendritic cell populations in abscesses, and total macrophages in lymph nodes. Priming potentiated S. aureus-specific phagocytic killing by bone marrow-derived macrophages in vitro, and their adoptive transfer into naïve skin afforded protective efficacy in vivo. Present findings indicate that protective immunity in recurrent S. aureus infection is locally targeted, and involves specific memory conferred by macrophages. These insights provide targets for vaccine and immunotherapeutic development against MRSA.
Collapse
|