1
|
Wu X, Liu G, Chang Y, Zheng M, Liu L, Xia X, Feng Y. Rapid and sensitive detection of chikungunya virus using one-tube, reverse transcription, semi-nested multi-enzyme isothermal rapid amplification, and lateral flow dipstick assays. J Clin Microbiol 2024; 62:e0038324. [PMID: 39140738 PMCID: PMC11389142 DOI: 10.1128/jcm.00383-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024] Open
Abstract
Chikungunya fever is an acute infectious disease caused by chikungunya virus (CHIKV), which is transmitted by Aedes mosquitoes. Simple, rapid, and sensitive detection of CHIKV is critical for its prevention and spread. To address this issue, we combined one-tube, reverse transcription semi-nested, multi-enzyme isothermal rapid amplification, and lateral flow dipstick strips assay to detect CHIKV RNA. The study used a 318-bp gene fragment of CHIKV NSP4 as the target of the assay. This method of amplification takes 30 min for two-step amplification at 39°C. The dilution of amplification products was added to the LFD strip with results visible to the naked eye after 10 min. The method has a sensitivity of 1 copy/μL for the detection of CHIKV RNA, which is 100-fold higher than the conventional reverse transcription-multi-enzyme isothermal rapid amplification and 10-fold higher than the reverse transcription quantitative PCR (RT-qPCR) method. In addition, the method demonstrated good specificity and a better detection rate (85.7%, 18 of 21) than RT-qPCR (80.9%, 17 of 21) in clinically confirmed patient plasma samples. Thus, the rapid CHIKV RNA assay developed in this study will be an important tool for the rapid and accurate screening of patients for chikungunya fever. IMPORTANCE This study presents a new one-tube, reverse transcription semi-nested, multi-enzyme isothermal rapid amplification assay combined with lateral flow dipstick strips for the detection of CHIKV. This technique significantly improves sensitivity and outperforms RT-qPCR for the detection of CHIKV, especially in samples with low viral loads. It is also significantly faster than conventional RT-qPCR and does not require special equipment or a standard PCR laboratory. The combination of the isothermal amplification technology developed in this study with point-of-care molecular testing offers the potential for rapid, on-site, low-cost molecular diagnosis of CHIKV.
Collapse
Affiliation(s)
- Xinlin Wu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Kecan Biotechnology Co., Ltd, Kunming, Yunnan, China
| | - Gaowen Liu
- Yunnan Kecan Biotechnology Co., Ltd, Kunming, Yunnan, China
| | - Yingchao Chang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Kecan Biotechnology Co., Ltd, Kunming, Yunnan, China
| | - Mengyuan Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Li Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Kecan Biotechnology Co., Ltd, Kunming, Yunnan, China
| | - Xueshan Xia
- Yunnan Provincial Key Laboratory of Public Health and Biosafety, Kunming Medical University, Kunming, Yunnan, China
| | - Yue Feng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Public Health and Biosafety, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Calvez E, Bounmany P, Somlor S, Xaybounsou T, Viengphouthong S, Keosenhom S, Brey PT, Lacoste V, Grandadam M. Multiple chikungunya virus introductions in Lao PDR from 2014 to 2020. PLoS One 2022; 17:e0271439. [PMID: 35839218 PMCID: PMC9286254 DOI: 10.1371/journal.pone.0271439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/30/2022] [Indexed: 12/04/2022] Open
Abstract
The first documented chikungunya virus (CHIKV) outbreak in Lao People’s Democratic Republic (Lao PDR) occurred in 2012–2013. Since then, several imported and a few autochthonous cases were identified by the national arbovirus surveillance network. The present study aimed to summarize the main genetic features of the CHIKV strains detected in Lao PDR between 2014 and 2020. Samples from Lao patients presenting symptoms compatible with a CHIKV infection were centralized in Vientiane Capital city for real-time RT-PCR screening. Molecular epidemiology was performed by sequencing the E2-6K-E1 region. From 2014 to 2020, two Asian lineage isolates (e.g. French Polynesia; Indonesia), one ECSA-IOL lineage isolate (e.g. Thailand) and one unclassified (e.g. Myanmar) were imported in Vientiane Capital city. Sequences from the autochthonous cases recorded in the Central and Southern parts of the country between July and September 2020 belonged to the ECSA-IOL lineage and clustered with CHIKV strains recently detected in neighboring countries. These results demonstrate the multiple CHIKV introductions in Lao PDR since 2014 and provide evidence for sporadic and time-limited circulation of CHIKV in the country. Even if the circulation of CHIKV seems to be geographically and temporally limited in Lao PDR, the development of international tourism and trade may cause future outbreaks of CHIKV in the country and at the regional level.
Collapse
Affiliation(s)
- Elodie Calvez
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane, Lao People’s Democratic Republic
- * E-mail:
| | - Phaithong Bounmany
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane, Lao People’s Democratic Republic
| | - Somphavanh Somlor
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane, Lao People’s Democratic Republic
| | - Thonglakhone Xaybounsou
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane, Lao People’s Democratic Republic
| | - Souksakhone Viengphouthong
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane, Lao People’s Democratic Republic
| | - Sitsana Keosenhom
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane, Lao People’s Democratic Republic
| | - Paul T. Brey
- Medical Entomology and Vector-Borne Disease Unit, Institut Pasteur du Laos, Vientiane, Lao People’s Democratic Republic
| | - Vincent Lacoste
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane, Lao People’s Democratic Republic
| | - Marc Grandadam
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane, Lao People’s Democratic Republic
| |
Collapse
|
3
|
Genetic characterization of chikungunya virus isolates from Aedes aegypti mosquitoes collected during a recent outbreak in Bangkok, Thailand. Arch Virol 2021; 166:3387-3398. [PMID: 34623503 DOI: 10.1007/s00705-021-05243-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne emerging pathogen that is transmitted to humans through the bite of female Aedes mosquitoes. CHIKV infection has become a major public health concern worldwide, as it has a significant impact on the healthcare system. Since 2004, the virus has emerged in Africa and subsequently spread to countries located near the Indian Ocean, including India, and to Europe, the Americas, and Asia. In Thailand, a large CHIKV outbreak occurred during 2008-2009 and was caused by a virus originating from the east/central/south African (ECSA) CHIKV genotype. Since then, the ECSA genotype of CHIKV has continued to circulate and has caused sporadic cases in different areas in Thailand. Approximately 20,000 reported cases have been confirmed by the Bureau of Epidemiology, Ministry of Public Health, Thailand, from January 1, 2018 to July 31, 2020. However, the causes of this CHIKV re-emergence remain unclear. To obtain a better understanding of CHIKV circulation during the recent outbreak in Bangkok, Thailand, complete genome analysis of CHIKV isolates from field-caught mosquitoes collected in outbreak areas was performed. A total of 28 Ae. aegypti samples (21 females and 7 males) were collected, and individual mosquitoes were used for CHIKV detection and isolation. Eleven of 28 (39.29%) female and three of 28 (10.71%) male mosquitoes were positive for CHIKV by E1 nested RT-PCR. Four CHIKV isolates were successfully isolated from four female Ae. aegypti mosquitoes. Based on complete genome analysis, several amino acid substitutions were identified in the protein coding region. The E1:K211E and E2:V264A mutations in the background of the E1:226A mutation were observed in all four CHIKV isolates. An important observation was the presence of one amino acid substitution, leading to an E1:K245R change. This mutation was found in all four CHIKV isolates from mosquitoes in this study and in Thai patients described previously. Additionally, phylogenetic analysis indicated that the four CHIKV isolates belonged to the Indian Ocean clade of the ECSA genotype. The results obtained in this study provide detailed information on the molecular characteristics and evolution of currently circulating CHIKV strains in Thailand, which are useful for developing prevention and control strategies.
Collapse
|
4
|
Sahoo P, Mondal HS, Hammouch Z, Abdeljawad T, Mishra D, Reza M. On the necessity of proper quarantine without lock down for 2019-nCoV in the absence of vaccine. RESULTS IN PHYSICS 2021; 25:104063. [PMID: 33868906 PMCID: PMC8041861 DOI: 10.1016/j.rinp.2021.104063] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 05/21/2023]
Abstract
Presently the world is passing through a critical phase due to the prevalence of the Novel Corona virus, 2019-nCoV or COVID-19, which has been declared a pandemic by WHO. The virus transmits via droplets of saliva or discharge from the nose when an infected person coughs or sneezes. Due to the absence of vaccine, to prevent the disease, social distancing and proper quarantine of infected populations are needed. Non-resident citizens coming from several countries need to be quarantined for 14 days prior to their entrance. The same is to be applied for inter-state movements within a country. The purpose of this article is to propose mathematical models, based on quarantine with no lock down, that describe the dynamics of transmission and spread of the disease thereby proposing an effective preventive measure in the absence of vaccine.
Collapse
Affiliation(s)
- Prasanta Sahoo
- Department of Mathematics, Midnapore College (Autonomous), Midnapore 721 101, West Bengal, India
| | - Himadri S Mondal
- Department of Mathematics, Midnapore College (Autonomous), Midnapore 721 101, West Bengal, India
| | - Zakia Hammouch
- Division of Applied Mathematics, Thu Dau Mot University, Binh Duong Province, Viet Nam
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
- Département des Sciences, École Normale supérieure, Moulay Ismail University of Meknès, 50000, Morocco
| | - Thabet Abdeljawad
- Department of Mathematics and General Sciences, Prince Sultan University, Riyadh, Saudi Arabia
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
- Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan
| | - Dwaipayan Mishra
- Department of Mathematics, Midnapore College (Autonomous), Midnapore 721 101, West Bengal, India
| | - Motahar Reza
- Department of Mathematics, GITAM Deemed to be University, Hyderabad 502329, India
| |
Collapse
|