1
|
Liu R, Zhang F, Li S, Liu Q, Pang Y, Li L. Regulation of ROS metabolism in macrophage via xanthine oxidase is associated with disease progression in pulmonary tuberculosis. Metabolomics 2024; 20:127. [PMID: 39520502 DOI: 10.1007/s11306-024-02194-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Pulmonary tuberculosis (PTB) exacerbation can lead to respiratory failure, multi-organ failure, and symptoms related to central nervous system diseases. The purpose of this study is to screen biomarkers and metabolic pathways that can predict the progression of PTB, and to verify the role of the metabolic enzyme xanthine oxidase (XO) in the progression of PTB. METHODS To explore the biomarkers and mechanisms underlying the progression of PTB, plasma metabolomics sequencing was conducted on patients with severe PTB, non-severe PTB, and healthy individuals. Screening differential metabolites and metabolic pathways that can predict the progression of PTB, and verifying the function and mechanism of action of XO through experiments. RESULTS The purine metabolism, sphingolipid metabolism, and amino acid metabolism between the three groups differ. In patients with severe PTB, the levels of xanthosine and hypoxanthine are increased, while the levels of D-tryptophan, dihydroceramide and uric acid are decreased. Inhibition of XO activity has been observed to reduce the levels of tumor necrosis factor (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6), as well as to suppress the production of reactive oxygen species (ROS) and the activation of the NF-κB pathway, while also promoting the growth of MTB within cells. CONCLUSION D-tryptophan, xanthosine, and dihydroceramide can be utilized as biomarkers for progression of PTB, assisting in the evaluation of disease progression, and XO stands out as a potential therapeutic target for impeding the progression of PTB.
Collapse
Affiliation(s)
- Ruichao Liu
- Department of Bacteriology and Immunology, Beijing Tuberculosis & Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Fuzhen Zhang
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P.R. China
| | - Shanshan Li
- Department of Bacteriology and Immunology, Beijing Tuberculosis & Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China
| | - Qiuyue Liu
- Department of Intensive Care Unit, Beijing Tuberculosis & Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China.
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Tuberculosis & Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China.
| | - Liang Li
- Department of Bacteriology and Immunology, Beijing Tuberculosis & Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, P.R. China.
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P.R. China.
| |
Collapse
|
2
|
Huang Y, Lang A, Yang S, Shahid MS, Yuan J. The Combined Use of Cinnamaldehyde and Vitamin C Is Beneficial for Better Carcass Character and Intestinal Health of Broilers. Int J Mol Sci 2024; 25:8396. [PMID: 39125968 PMCID: PMC11313147 DOI: 10.3390/ijms25158396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The use of cinnamaldehyde and Vitamin C can improve immunity and intestinal health. A two-way factorial design was employed to investigate the main and interactive effects of cinnamaldehyde and vitamin C on the growth, carcass, and intestinal health of broiler chickens. A total of 288 one-day-old female Arbor Acres broiler chicks were randomly distributed among four treatment groups, consisting of six replicate cages with 12 birds each. Four treatments were basal diet or control (CON), supplemental cinnamaldehyde (CA) 300 g/ton (g/t), vitamin C (VC) 300 g/t, and cinnamaldehyde 300 g/t, and vitamin C 300 g/t (CA + VC), respectively. The results showed that supplemental CA did not affect the growth performance or slaughter performance of broilers at 21 days (d), 42 days (d), and 1-42 days (d); however, it could improve intestinal barrier function at 42 d of age and reduce the mRNA expression of inflammatory factors in the intestine at 21 d and 42 d of age. Supplemental VC showed a trend towards increasing body weight gain (BWG) at 21 d (p = 0.094), increased breast muscle rate (at 21-d 5.33%, p < 0.05 and at 42-d 7.09%, p = 0.097), and decreased the abdominal fat (23.43%, p < 0.05) and drip loss (20.68%, p < 0.05) at 42-d. Moreover, VC improves intestinal morphology and intestinal barrier function and maintains a balanced immune response. The blend of CA and VC significantly upregulated the mRNA expression of myeloid differentiation factor 88 (MyD-88) in the intestine at 21 d of age, the mRNA expression of catalase (CAT), Occludin, Claudin-1, Mucin-2, nuclear factor-kappa B (NF-κB) and toll-like receptor 4 (TLR-4) in the intestine at 42 d of age (p < 0.01), and downregulated the mRNA expression of interleukin 10 (IL-10), interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α) in the intestine at 21-d and 42-d of age, and interleukin-1 beta (IL-1β) mRNA in intestine at 42 d of age (p < 0.01). This study suggested that the combination of CA and VC had the potential to regulate intestinal health and result in better carcass character of broilers.
Collapse
Affiliation(s)
| | | | | | | | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (A.L.); (S.Y.); (M.S.S.)
| |
Collapse
|
3
|
Liang Y, Liang Y, Wang Q, Li Q, Huang Y, Li R, Pan X, Lie L, Xu H, Han Z, Liu H, Wen Q, Zhou C, Ma L, Zhou X. Viperin inhibits interferon-γ production to promote Mycobacterium tuberculosis survival by disrupting TBK1-IKKε-IRF3-axis and JAK-STAT signaling. Inflamm Res 2024; 73:897-913. [PMID: 38625657 PMCID: PMC11106103 DOI: 10.1007/s00011-024-01873-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/27/2023] [Accepted: 03/13/2024] [Indexed: 04/17/2024] Open
Abstract
OBJECTIVES AND DESIGN As an interferon-inducible protein, Viperin has broad-spectrum antiviral effects and regulation of host immune responses. We aim to investigate how Viperin regulates interferon-γ (IFN-γ) production in macrophages to control Mycobacterium tuberculosis (Mtb) infection. METHODS We use Viperin deficient bone-marrow-derived macrophage (BMDM) to investigate the effects and machines of Viperin on Mtb infection. RESULTS Viperin inhibited IFN-γ production in macrophages and in the lung of mice to promote Mtb survival. Further insight into the mechanisms of Viperin-mediated regulation of IFN-γ production revealed the role of TANK-binding kinase 1 (TBK1), the TAK1-dependent inhibition of NF-kappa B kinase-epsilon (IKKε), and interferon regulatory factor 3 (IRF3). Inhibition of the TBK1-IKKε-IRF3 axis restored IFN-γ production reduced by Viperin knockout in BMDM and suppressed intracellular Mtb survival. Moreover, Viperin deficiency activated the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway, which promoted IFN-γ production and inhibited Mtb infection in BMDM. Additionally, a combination of the anti-TB drug INH treatment in the absence of Viperin resulted in further IFN-γ production and anti-TB effect. CONCLUSIONS This study highlights the involvement of TBK1-IKKε-IRF3 axis and JAK-STAT signaling pathways in Viperin-suppressed IFN-γ production in Mtb infected macrophages, and identifies a novel mechanism of Viperin on negatively regulating host immune response to Mtb infection.
Collapse
Affiliation(s)
- Yao Liang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Yun Liang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Qi Wang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Qianna Li
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Yingqi Huang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Rong Li
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Xiaoxin Pan
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Linmiao Lie
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Hui Xu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Zhenyu Han
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Honglin Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Chaoying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China.
| | - Xinying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
4
|
Chen L, He T, Wang R, Liu H, Wang X, Li H, Jing M, Zhou X, Wei S, Zou W, Zhao Y. Integrated Approaches Revealed the Therapeutic Mechanisms of Zuojin Pill Against Gastric Mucosa Injury in a Rat Model with Chronic Atrophic Gastritis. Drug Des Devel Ther 2024; 18:1651-1672. [PMID: 38774485 PMCID: PMC11108080 DOI: 10.2147/dddt.s454758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
Background The Zuojin Pill (ZJP) is widely used for treating chronic atrophic gastritis (CAG) in clinical practice, effectively ameliorating symptoms such as vomiting, pain, and abdominal distension in patients. However, the underlying mechanisms of ZJP in treating CAG has not been fully elucidated. Purpose This study aimed to clarify the characteristic function of ZJP in the treatment of CAG and its potential mechanism. Methods The CAG model was established by alternant administrations of ammonia solution and sodium deoxycholate, as well as an irregular diet. Therapeutic effects of ZJP on body weight, serum biochemical indexes and general condition were analyzed. HE staining and AB-PAS staining were analyzed to characterize the mucosal injury and the thickness of gastric mucosa. Furthermore, network pharmacology and molecular docking were used to predict the regulatory mechanism and main active components of ZJP in CAG treatment. RT-PCR, immunohistochemistry, immunofluorescence and Western blotting were used to measure the expression levels of apoptosis-related proteins, gastric mucosal barrier-associated proteins and PI3K/Akt signaling pathway proteins. Results The results demonstrated that ZJP significantly improved the general state of CAG rats, alleviated weight loss and gastric histological damage and reduced the serum biochemical indicators. Network pharmacology and molecular docking found that ZJP in treating CAG by inhibiting inflammation, suppressing apoptosis, and protecting the gastric mucosal barrier via the PI3K/Akt signaling pathway. Further experiments confirmed that ZJP obviously modulated the expression of key proteins involved in gastric mucosal cell apoptosis, such as Bax, Bad, Apaf-1, cleaved-caspase-3, cleaved-caspase-9, Cytochrome C, Bcl-2, and Bcl-xl. Moreover, ZJP significantly reversed the protein expression of Occludin, ZO-1, Claudin-4 and E-cadherin. Conclusion Our study revealed that ZJP treats CAG by inhibiting the PI3K/Akt signaling pathway. This research provided a scientific basis for the rational use of ZJP in clinical practice.
Collapse
Affiliation(s)
- Lisheng Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Department of Pharmacy Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Tingting He
- Division of Integrative Medicine, The Fifth Medical Center of General Hospital of PLA, Beijing, People’s Republic of China
| | - Ruilin Wang
- Division of Integrative Medicine, The Fifth Medical Center of General Hospital of PLA, Beijing, People’s Republic of China
| | - Honghong Liu
- Integrated TCM & Western Medicine Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Xin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Department of Pharmacy Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Haotian Li
- Department of Pharmacy Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Manyi Jing
- Department of Pharmacy Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Xuelin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, People’s Republic of China
| | - Shizhang Wei
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, People’s Republic of China
| | - Wenjun Zou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Yanling Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Department of Pharmacy Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Chen J, Wang Q, Zhong B, Zheng H, Wang D, Huang X, Liu L, Liu T. Activation of the RIG-I/MAVS Signaling Pathway during Human Adenovirus Type 3 Infection Impairs the Pro-Inflammatory Response Induced by Secondary Infection with Staphylococcus aureus. Int J Mol Sci 2024; 25:4178. [PMID: 38673764 PMCID: PMC11049948 DOI: 10.3390/ijms25084178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/25/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
The exacerbation of pneumonia in children with human adenovirus type 3 (HAdV-3E) is secondary to a Staphylococcus aureus (S. aureus) infection. The influence of host-pathogen interactions on disease progression remains unclear. It is important to note that S. aureus infections following an HAdV-3E infection are frequently observed in clinical settings, yet the underlying susceptibility mechanisms are not fully understood. This study utilized an A549 cell model to investigate secondary infection with S. aureus following an HAdV-3E infection. The findings suggest that HAdV-3E exacerbates the S. aureus infection by intensifying lung epithelial cell damage. The results highlight the role of HAdV-3E in enhancing the interferon signaling pathway through RIG-I (DDX58), resulting in the increased expression of interferon-stimulating factors like MX1, RSAD2, and USP18. The increase in interferon-stimulating factors inhibits the NF-κB and MAPK/P38 pro-inflammatory signaling pathways. These findings reveal new mechanisms of action for HAdV-3E and S. aureus in secondary infections, enhancing our comprehension of pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Liu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (J.C.); (Q.W.); (B.Z.); (H.Z.); (D.W.); (X.H.)
| | - Tiantian Liu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (J.C.); (Q.W.); (B.Z.); (H.Z.); (D.W.); (X.H.)
| |
Collapse
|
6
|
Shan L, Wang Z, Wu L, Qian K, Peng G, Wei M, Tang B, Jun X. Statistical and network analyses reveal mechanisms for the enhancement of macrophage immunity by manganese in Mycobacterium tuberculosis infection. Biochem Biophys Rep 2024; 37:101602. [PMID: 38155943 PMCID: PMC10753046 DOI: 10.1016/j.bbrep.2023.101602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/01/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023] Open
Abstract
Tuberculosis is a significant infectious disease that poses a serious risk to human health. Our previous research has indicated that manganese ions reduce the bacterial load of Mycobacterium tuberculosis in macrophages, but the exact immune defense mechanism remains unknown. Several critical proteins and pathways involved in the host's immune response during this process are still unidentified. Our research aims to identify these proteins and pathways and provide a rationale for the use of manganese ions in the adjuvant treatment of tuberculosis. We downloaded GSE211666 data from the GEO database and selected the RM (Post-infection manganese ion treatment group) and Ra (single-infection group) groups for comparison and analysis to identify differential genes. These differential genes were then enriched and analyzed using STRING, Cytoscape, and NDEx tools to identify the two most relevant pathways of the "Host Response Signature Network." After conducting an in-depth analysis of these two pathways, we found that manganese ions mainly mediate (1) the interferon -gamma (IFN-γ) and its receptor IFNGR and the downstream JAK-STAT pathway and (2) the NFκB pathway to enhance macrophage response to interferon, autophagy, polarization, and cytokine release. Using qPCR experiments, we verified the increased expression of CXCL10, MHCII, IFNγ, CSF2, and IL12, all of which are cytokines that play a key role in resistance to Mycobacterium tuberculosis infection, suggesting that macrophages enter a state of pro-inflammatory and activation after the addition of manganese ions, which enhances their immunosuppressive effect against Mycobacterium tuberculosis. We conclude that our study provides evidence of manganese ion's ability to treat tuberculosis adjuvantly.
Collapse
Affiliation(s)
- Lidong Shan
- College of Life Science, Bengbu Medical University, China
| | - Zihai Wang
- College of Life Science, Bengbu Medical University, China
| | - Lingshan Wu
- College of Life Science, Bengbu Medical University, China
| | - Kaiqiang Qian
- College of Life Science, Bengbu Medical University, China
| | - Guisen Peng
- College of Life Science, Bengbu Medical University, China
| | - MeiLi Wei
- College of Life Science, Bengbu Medical University, China
| | - Bikui Tang
- College of Life Science, Bengbu Medical University, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, China
| | - Xi Jun
- College of Life Science, Bengbu Medical University, China
| |
Collapse
|
7
|
Li Y, Chen L, Zheng Q, Liu G, Wang M, Wei S, Chen T. Lactate dehydrogenase A promotes nasopharyngeal carcinoma progression through the TAK1/NF-κB Axis. Mol Biol Rep 2024; 51:152. [PMID: 38236332 DOI: 10.1007/s11033-023-09130-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a malignant tumor that originates in the nasopharyngeal mucosa and is common in China and Southeast Asian countries. Cancer cells reprogram glycolytic metabolism to promote their growth, survival and metastasis. Glycolysis plays an important role in NPC development, but the underlying mechanisms remain incompletely elucidated. Lactate dehydrogenase A (LDHA) is a crucial glycolytic enzyme, catalyzing the last step of glycolysis. This study aims to investigate the exact role of LDHA, which catalyzes the conversion of pyruvate into lactate, in NPC development. METHODS AND RESULTS The western blot and immunohistochemical (IHC) results indicated that LDHA was significantly upregulated in NPC cells and clinical samples. LDHA knockdown by shRNA significantly inhibited NPC cell proliferation and invasion. Further knockdown of LDHA dramatically weakened the tumorigenicity of NPC cells in vivo. Mechanistic studies showed that LDHA activated TGF-β-activated kinase 1 (TAK1) and subsequent nuclear factor κB (NF-κB) signaling to promote NPC cell proliferation and invasion. Exogenous lactate supplementation restored NPC cell proliferation and invasion inhibited by LDHA knockdown, and this restorative effect was reversed by NF-κB inhibitor (BAY 11-7082) or TAK1 inhibitor (5Z-7-oxozeaenol) treatment. Moreover, clinical sample analyses showed that LDHA expression was positively correlated with TAK1 Thr187 phosphorylation and poor prognosis. CONCLUSIONS Our results suggest that LDHA and its major metabolite lactate drive NPC progression by regulating TAK1 and its downstream NF-κB signaling, which could become a therapeutic target in NPC.
Collapse
Affiliation(s)
- Yingzi Li
- State Key Laboratory of Respiratory Disease at People's Hospital of Yangjiang, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Yangjiang Key Laboratory of Respiratory Disease, Department of Respiratory Medicine, People's Hospital of Yangjiang, Yangjiang, 529500, Guangdong, China
| | - Lanfang Chen
- State Key Laboratory of Respiratory Disease at People's Hospital of Yangjiang, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Qiaochong Zheng
- Yangjiang Key Laboratory of Respiratory Disease, Department of Respiratory Medicine, People's Hospital of Yangjiang, Yangjiang, 529500, Guangdong, China
| | - Guanxin Liu
- State Key Laboratory of Respiratory Disease at People's Hospital of Yangjiang, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Mengjiao Wang
- Clinical Research Lab Center, Guizhou Provincial People's Hospital, Guizhou University Medical College, Guiyang, 550025, Guizhou, China
| | - Shupei Wei
- State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, Guangdong, China.
| | - Tao Chen
- State Key Laboratory of Respiratory Disease at People's Hospital of Yangjiang, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
- Yangjiang Key Laboratory of Respiratory Disease, Department of Respiratory Medicine, People's Hospital of Yangjiang, Yangjiang, 529500, Guangdong, China.
| |
Collapse
|
8
|
Fu J, Luo X, Lin M, Xiao Z, Huang L, Wang J, Zhu Y, Liu Y, Tao H. Marine-Fungi-Derived Gliotoxin Promotes Autophagy to Suppress Mycobacteria tuberculosis Infection in Macrophage. Mar Drugs 2023; 21:616. [PMID: 38132937 PMCID: PMC10745037 DOI: 10.3390/md21120616] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
The Mycobacterium tuberculosis (MTB) infection causes tuberculosis (TB) and has been a long-standing public-health threat. It is urgent that we discover novel antitubercular agents to manage the increased incidence of multidrug-resistant (MDR) or extensively drug-resistant (XDR) strains of MTB and tackle the adverse effects of the first- and second-line antitubercular drugs. We previously found that gliotoxin (1), 12, 13-dihydroxy-fumitremorgin C (2), and helvolic acid (3) from the cultures of a deep-sea-derived fungus, Aspergillus sp. SCSIO Ind09F01, showed direct anti-TB effects. As macrophages represent the first line of the host defense system against a mycobacteria infection, here we showed that the gliotoxin exerted potent anti-tuberculosis effects in human THP-1-derived macrophages and mouse-macrophage-leukemia cell line RAW 264.7, using CFU assay and laser confocal scanning microscope analysis. Mechanistically, gliotoxin apparently increased the ratio of LC3-II/LC3-I and Atg5 expression, but did not influence macrophage polarization, IL-1β, TNF-a, IL-10 production upon MTB infection, or ROS generation. Further study revealed that 3-MA could suppress gliotoxin-promoted autophagy and restore gliotoxin-inhibited MTB infection, indicating that gliotoxin-inhibited MTB infection can be treated through autophagy in macrophages. Therefore, we propose that marine fungi-derived gliotoxin holds the promise for the development of novel drugs for TB therapy.
Collapse
Affiliation(s)
- Jun Fu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; (J.F.)
| | - Xiaowei Luo
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Miaoping Lin
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zimin Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; (J.F.)
| | - Lishan Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; (J.F.)
| | - Jiaxi Wang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yongyan Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; (J.F.)
| | - Yonghong Liu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Huaming Tao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; (J.F.)
| |
Collapse
|
9
|
Gao Z, Li XG, Feng SR, Chen JF, Song K, Shi YH, Tang Z, Liu WR, Zhang X, Huang A, Luo XM, Zeng HY, Gao Q, Shi GM, Ke AW, Zhou J, Fan J, Fu XT, Ding ZB. Autophagy suppression facilitates macrophage M2 polarization via increased instability of NF-κB pathway in hepatocellular carcinoma. Int Immunopharmacol 2023; 123:110685. [PMID: 37494837 DOI: 10.1016/j.intimp.2023.110685] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
The tumor microenvironment is a highly heterogeneous circumstance composed of multiple components, while tumor-associated macrophages (TAMs) are major innate immune cells with highly plastic and are always educated by tumor cells to structure an advantageous pro-tumor immune microenvironment. Despite emerging evidence focalizing the role of autophagy in other immune cells, the regulatory mechanism of autophagy in macrophage polarization remains poorly understood. Herein, we demonstrated that hepatocellular carcinoma (HCC) cells educated macrophages toward M2-like phenotype polarization under the condition of coculture. Moreover, we observed that inhibition of macrophage autophagy promoted M2-like macrophage polarization, while the tendency was impeded when autophagy was motivated. Mechanistically, macrophage autophagy inhibition inactivates the NF-κB pathway by increasing the instability of TAB3 via ubiquitination degradation, which leads to the M2-like phenotype polarization of macrophages. Both immunohistochemistry staining using human HCC tissues and experiment in vivo verified autophagy inhibition is correlated with M2 macrophage polarization. Altogether, we illustrated that macrophage autophagy was involved in the process of HCC cells domesticating M2 macrophage polarization via the NF-κB pathway. These results provide a new target to interfere with the polarization of macrophages to M2-like phenotype during HCC progression.
Collapse
Affiliation(s)
- Zheng Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Xiao-Gang Li
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Shan-Ru Feng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Jia-Feng Chen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Kang Song
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Ying-Hong Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Zheng Tang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Wei-Ren Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Xin Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Ao Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Xuan-Ming Luo
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Hai-Ying Zeng
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Guo-Ming Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Ai-Wu Ke
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Xiu-Tao Fu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China.
| | - Zhen-Bin Ding
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China; Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China; Department of liver Surgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China.
| |
Collapse
|
10
|
Zhang J, Ning J, Fu W, Shi Y, Zhang J, Ding S. CMTM3 protects the gastric epithelial cells from apoptosis and promotes IL-8 by stabilizing NEMO during Helicobacter pylori infection. Gut Pathog 2023; 15:6. [PMID: 36782312 PMCID: PMC9924195 DOI: 10.1186/s13099-023-00533-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND CKLF-like MARVEL transmembrane domain containing 3 (CMTM3) plays an important role in cancer development. Although Helicobacter pylori (H. pylori) infection is a main cause of gastric cancer, the function of CMTM3 during H. pylori infection remains unclear. CMTM3 expression levels in tissues from H. pylori-infected patients and cells co-cultured with H. pylori were analyzed. qRT-PCR and ELISA were used to investigate the effects of CMTM3 on interleukin 8 (IL-8) expression. Annexin V/propidium iodide staining was performed to evaluate the function of CMTM3 in the apoptosis of gastric epithelial cells. Proteomic analysis was performed to explore the underlying mechanism of CMTM3 during H. pylori infection. The interaction between CMTM3 and NEMO was determined via co-immunoprecipitation, HA-ubiquitin pull-down assay, and immunofluorescence. RESULTS H. pylori induced a significant increase in CMTM3 expression. CMTM3 inhibited gastric mucosal epithelial cells from apoptosis and increased the expression level of IL-8 during H. pylori infection. KEGG pathway enrichment analysis revealed that differentially expressed proteins were involved in epithelial cell signaling in H. pylori infection. CMTM3 directly interacted with NEMO, which promoted protein stabilization by down-regulation of its ubiquitylation. CONCLUSIONS CMTM3 reduces apoptosis and promotes IL-8 expression in the gastric epithelial cells by stabilizing NEMO during H. pylori infection. These findings characterize a new role for CMTM3 in host-pathogen interactions and provide novel insight into the molecular regulation of NEMO.
Collapse
Affiliation(s)
- Jing Zhang
- grid.411642.40000 0004 0605 3760Department of Gastroenterology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191 People’s Republic of China
| | - Jing Ning
- grid.411642.40000 0004 0605 3760Department of Gastroenterology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191 People’s Republic of China
| | - Weiwei Fu
- grid.411642.40000 0004 0605 3760Department of Gastroenterology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191 People’s Republic of China
| | - Yanyan Shi
- grid.411642.40000 0004 0605 3760Research Center of Clinical Epidemiology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191 People’s Republic of China
| | - Jing Zhang
- grid.411642.40000 0004 0605 3760Department of Gastroenterology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191 People’s Republic of China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, 100191, People's Republic of China.
| |
Collapse
|
11
|
Zhou X, Xu H, Li Q, Wang Q, Liu H, Huang Y, Liang Y, Lie L, Han Z, Chen Y, Huang Y, Zhou W, Wen Q, Zhou C, Hu S, Ma L. Viperin deficiency promotes dendritic cell activation and function via NF-kappaB activation during Mycobacterium tuberculosis infection. Inflamm Res 2023; 72:27-41. [PMID: 36315280 PMCID: PMC9902321 DOI: 10.1007/s00011-022-01638-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES AND DESIGN Dendritic cells (DCs) are one of the key immune cells in bridging innate and adaptive immune response against Mycobacterium tuberculosis (Mtb) infection. Interferons (IFNs) play important roles in regulating DC activation and function. Virus-inhibitory protein, endoplasmic reticulum-associated, interferon-inducible (Viperin) is one of the important IFN-stimulated genes (ISGs), and elicits host defense against infection. METHODS We investigated the effects and mechanisms of Viperin on DC activation and function using Viperin deficient bone marrow-derived dendritic cells (BMDCs) during Mtb infection. RESULTS Viperin deficiency enhanced phagocytic activity and increased clearance of Mtb in DCs, produced higher abundance of NO, cytokine including interleukin-12 (IL-12), Tumor necrosis factor-α (TNF-α), IL-1β, IL-6 and chemokine including CXCL1, CXCL2 and CXCL10, elevated MHC I, MHC II and co-stimulatory molecules expression, and enhanced CD4+ and CD8+ T cell responses. Mechanistically, Viperin deficiency promoted DC activation and function through NF-κB p65 activation. NF-κB p65 inhibitor prevented cytokine and chemokine production, and co-stimulatory molecules expression promoted by Viperin deficiency. CONCLUSIONS These results suggest that Mtb induced Viperin expression could impair the activation of host defense function of DCs and DC-T cell cross talk during Mtb infection. This research may provide a potential target for future HDT in TB therapy.
Collapse
Affiliation(s)
- Xinying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| | - Hui Xu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515 China
| | - Qianna Li
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515 China
| | - Qi Wang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515 China
| | - Honglin Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515 China
| | - Yingqi Huang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515 China
| | - Yao Liang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515 China
| | - Linmiao Lie
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515 China
| | - Zhenyu Han
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515 China
| | - Yaoxin Chen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515 China
| | - Yulan Huang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515 China
| | - Wenle Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515 China
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515 China
| | - Chaoying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515 China
| | - Shengfeng Hu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515 China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
12
|
Tian H, Chen F, Wang Y, Liu Y, Ma G, Zhao Y, Ma Y, Tian T, Ma R, Yu Y, Wang D. Nur77 Prevents Osteoporosis by Inhibiting the NF-κB Signalling Pathway and Osteoclast Differentiation. J Cell Mol Med 2022; 26:2163-2176. [PMID: 35181992 PMCID: PMC8995449 DOI: 10.1111/jcmm.17238] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 01/16/2023] Open
Abstract
Inflammation is a major risk factor for osteoporosis, and reducing inflammatory levels is important for the prevention of osteoporosis. Although nuclear receptor 77 (Nur77) protects against inflammation in a variety of diseases, its role in osteoporosis is unknown. Therefore, the main purpose of this study was to investigate the osteoprotective and anti‐inflammatory effects of Nur77. The microCT and haematoxylin and eosin staining results indicated that knockout of Nur77 accelerated femoral bone loss in mice. The enzyme‐linked immunosorbent assay (ELISA) results showed that knockout of Nur77 increased the serum levels of hsCRP and IL‐6. The expression levels of NF‐κB, IL‐6, TNF‐α and osteoclastogenesis factors (TRAP, NFATC1, Car2, Ctsk) in the femurs of Nur77 knockout mice were increased significantly. Furthermore, in vitro, shNur77 promoted the differentiation of RAW264.7 cells into osteoclasts by activating NF‐κB, which was confirmed by PDTC treatment. Mechanistically, Nur77 inhibited osteoclast differentiation by inducing IκB‐α and suppressing IKK‐β. In RAW264.7 cells, overexpression of Nur77 alleviated inflammation induced by siIκB‐α, while siIKK‐β alleviated inflammation induced by shNur77. Consistent with the in vivo studies, we found that compared with control group, older adults with high serum hsCRP levels were more likely to suffer from osteoporosis (OR = 1.76, p < 0.001). Our data suggest that Nur77 suppresses osteoclast differentiation by inhibiting the NF‐κB signalling pathway, strongly supporting the notion that Nur77 has the potential to prevent and treat osteoporosis.
Collapse
Affiliation(s)
- Huanlian Tian
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.,Department of Health Statistics, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Feng Chen
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yingfang Wang
- Department of General Practice Medicine, Nanyang Centre Hospital, Nanyang, Henan, China
| | - Yixuan Liu
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guojing Ma
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuhong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yanan Ma
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Tingting Tian
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ruze Ma
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Yu
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Difei Wang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Qiguiyin Decoction Improves Multidrug-Resistant Pseudomonas aeruginosa Infection in Rats by Regulating Inflammatory Cytokines and the TLR4/MyD88/NF-κB Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5066434. [PMID: 35071595 PMCID: PMC8776462 DOI: 10.1155/2022/5066434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022]
Abstract
Pseudomonas aeruginosa (PA), a Gram-negative bacterium, has a high detection rate in hospital-acquired infections. Recently, the frequent appearance of multidrug-resistant (MDR) PA strain with high morbidity and mortality rates has aggravated the difficulty in treating infectious diseases. Due to its multiple resistance mechanisms, the commonly used antibiotics have gradually become less effective. Qiguiyin decoction (QGYD) is a clinically experienced prescription of Chinese herbal medicine, and its combined application with antibiotics has been confirmed to be effective in the clinical treatment of MDR PA infection, which could be a promising strategy for the treatment of drug-resistant bacterial infections. However, the mechanism of QGYD restoring antibiotics susceptibility to MDR PA remains unclear. In the present study, we investigated the effects of QGYD and levofloxacin (LEV) singly or in combination on MDR PA-induced pneumonia rat models. Further analysis was carried out in the serum differential expression profiles of inflammatory cytokines by cytokine antibody array. Besides, the lung TLR4/MyD88/NF-κB signaling pathway was detected by RT-qPCR. Our results showed that based on the treatment of MDR PA-infected rat model with LEV, the combination of QGYD improved the general state and immune organ index. Furthermore, it moderately increased the expressions of proinflammatory cytokines including IL-1β, IL-6, and TNF-α in the early stage of infection and decreased their release rapidly in the later stage, while regulated the same phase change of anti-inflammatory cytokine IL-10. In addition, the adhesion molecule ICAM-1 was significantly downregulated after QGYD combined with LEV treatment. Moreover, the mRNA expressions of TLR4, MyD88, NF-κB, and ICAM-1 were significantly downregulated. These results indicated that the mechanism of QGYD restoring LEV susceptibility to MDR PA was related to its regulation of inflammatory cytokines and the TLR4/MyD88/NF-κB signaling pathway, which provides theoretical support for the clinical application of QGYD combined with LEV therapy to MDR PA infection.
Collapse
|
14
|
Huang X, Zhang MZ, Liu B, Ma SY, Yin X, Guo LH. Astragaloside IV Attenuates Polymicrobial Sepsis-Induced Cardiac Dysfunction in Rats via IKK/NF-κB Pathway. Chin J Integr Med 2021; 27:825-831. [PMID: 34432200 DOI: 10.1007/s11655-021-2869-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To evaluate the protective effects of Astragaloside IV (AST) in a rat model of myocardial injury induced by cecal ligation and puncture (CLP). METHODS The model of sepsis-induced cardiac dysfunction was induced by CLP. Using a random number table, 50 specific pathogen free grade of Sprague Dawley rats were randomized into 5 groups: the sham group (sham), the model group (CLP, 18 h/72 h) and AST group (18 h/72 h). Except the sham group, the rats in other groups received CLP surgery to induce sepsis. CLP groups received intragastric administration with normal saline after CLP. AST groups received intragastric administration with AST solution (40 mg/kg) once a day. The levels of inflammatory mediators and oxidative stress markers in the serum of the septic rats were determined via enzyme-linked immunosorbent assay (ELISA) at different time point, such as interleukin 6 (IL-6), IL-10, high mobility group box-1 protein B1 (HMGB-1), superoxide dismutase (SOD), and malondialdehyde (MDA). Cardiac function was determined by echocardiography. Moreover, changes in myocardial pathology were evaluated using hematoxylin and eosin staining. The levels of lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) were analysed to determine the status of CLP-induced myocardium. In addition, the apotosis of myocardial cells was analysed by terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL). The protein levels of B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X (Bax), IκB kinase α (IKKα), nuclear factor kappa B p65 (NF-κB p65) were detected by Western blot analysis. Moreover, survival rate was investigated. RESULTS AST improved the survival rate of CLP-induced rats by up to 33.3% (P<0.05). The cardioprotective effect of AST was observed by increased ejection fraction, fractional shortening and left ventricular internal diameter in diastole respectively (P<0.01 or P<0.05). Subsequently, AST attenuated CLP-induced myocardial apoptosis and the ratio of Bcl-2/Bax in the myocardium, as well as the histological alterations of myocardium (P<0.01 or P<0.05); the generation of inflammatory cytokines (IL-6, IL-10, HMGB-1) and oxidative stress markers (SOD, MDA) in the serum was significantly alleviated (P<0.01 or P<0.05). On the other hand, AST markedly suppressed CLP-induced accumulation of IKK-α and NF-κB p65 subunit phosphorylation (P<0.01 or P<0.05). CONCLUSIONS AST plays a significant protective role in sepsis-induced cardiac dysfunction and survival outcome. The possible mechanism of cardioprotection is dependent on the activation of the IKK/NF-κB pathway in cardiomyocytes.
Collapse
Affiliation(s)
- Xin Huang
- Intensive Care Research Team of Traditional Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Min-Zhou Zhang
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Bo Liu
- Department of Radiology, Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Shi-Yu Ma
- Intensive Care Research Team of Traditional Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Xin Yin
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Li-Heng Guo
- Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, the Second Clinical Collage of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
15
|
Mourenza Á, Gil JA, Mateos LM, Letek M. Novel Treatments against Mycobacterium tuberculosis Based on Drug Repurposing. Antibiotics (Basel) 2020; 9:E550. [PMID: 32872158 PMCID: PMC7557778 DOI: 10.3390/antibiotics9090550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis is the leading cause of death, worldwide, due to a bacterial pathogen. This respiratory disease is caused by the intracellular pathogen Mycobacterium tuberculosis and produces 1.5 million deaths every year. The incidence of tuberculosis has decreased during the last decade, but the emergence of MultiDrug-Resistant (MDR-TB) and Extensively Drug-Resistant (XDR-TB) strains of M. tuberculosis is generating a new health alarm. Therefore, the development of novel therapies based on repurposed drugs against MDR-TB and XDR-TB have recently gathered significant interest. Recent evidence, focused on the role of host molecular factors on M. tuberculosis intracellular survival, allowed the identification of new host-directed therapies. Interestingly, the mechanism of action of many of these therapies is linked to the activation of autophagy (e.g., nitazoxanide or imatinib) and other well-known molecular pathways such as apoptosis (e.g., cisplatin and calycopterin). Here, we review the latest developments on the identification of novel antimicrobials against tuberculosis (including avermectins, eltrombopag, or fluvastatin), new host-targeting therapies (e.g., corticoids, fosfamatinib or carfilzomib) and the host molecular factors required for a mycobacterial infection that could be promising targets for future drug development.
Collapse
Affiliation(s)
- Álvaro Mourenza
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
| | - José A. Gil
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
| | - Luis M. Mateos
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
| | - Michal Letek
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain; (Á.M.); (J.A.G.)
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, 24071 León, Spain
| |
Collapse
|