1
|
Wang Z, Jiang Z, Xu H, Jiao X, Li Q. Prevalence and molecular characterization of mcr-1-positive foodborne ST34-Salmonella isolates in China. Microbiol Res 2023; 274:127441. [PMID: 37356255 DOI: 10.1016/j.micres.2023.127441] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) and S. 4,[5],12:i:- have become the most common serovars associated with human salmonellosis worldwide. Moreover, the emergence of mcr-carrying S. Typhimurium and S. 4,[5],12:i:- with multidrug resistance (MDR) patterns has posed a threat to public health. In this study, we retrospectively screened 2009-2022 laboratory-preserved strains for the presence of mcr genes. We obtained 16 mcr-1-positive S. Typhimurium and S. 4,[5],12:i:- strains with MDR that belonged to sequence type 34 (ST34). Whole-genome sequencing analysis revealed that the mcr-1 was located on the IncI2 or IncHI2 plasmids. The ISApl1 element downstream of mcr-1 was present in all pig-derived strains. Conjugation experiments confirmed that nine mcr-1-carrying IncHI2 plasmids could not be transferred to Escherichia coli due to loss of the conjugation region. Finally, core genome single nucleotide polymorphism (cgSNP) analyses of the 16 mcr-1-carrying strains and 77 mcr-carrying ST34-Salmonella genome sequences from the NCBI and ENA databases showed that five out of eight clusters contained strains from pig and pig products, revealing pigs and pig products as key reservoirs of mcr-1-positive ST34-Salmonella strains. The transmission of mcr-carrying ST34 Salmonella strains to humans via the pig food chain is a potential cause for public health concern in controlling human salmonellosis.
Collapse
Affiliation(s)
- Zhenyu Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China
| | - Zhongyi Jiang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China
| | - Haiyan Xu
- Nantong Center for Disease Control and Prevention, Nantong 226007, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China.
| | - Qiuchun Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, China.
| |
Collapse
|
2
|
Jiang S, Wang X, Yu H, Zhang J, Wang J, Li J, Li X, Hu K, Gong X, Gou X, Yang Y, Li C, Zhang X. Molecular antibiotic resistance mechanisms and co-transmission of the mcr-9 and metallo-β-lactamase genes in carbapenem-resistant Enterobacter cloacae complex. Front Microbiol 2022; 13:1032833. [PMID: 36386624 PMCID: PMC9659896 DOI: 10.3389/fmicb.2022.1032833] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2023] Open
Abstract
Carbapenem-resistant Enterobacter cloacae complex (CRECC) has increasingly emerged as a major cause of healthcare-associated infections, with colistin being one of the last-resort antibiotics of treatment. Mobile colistin resistance (mcr)-9 is a member of a growing family of mcr genes and has been reported to be an inducible gene encoding an acquired phosphoethanolamine transferase. Here, we collected 24 ECC strains from Chongqing, China from 2018 to 2021. Subsequently, antibiotic resistance genes and the transmission dynamics of the strains were determined by PCR, whole-genome sequencing, and bioinformatic analysis. The mcr-9 was identified in IncHI2/2A or IncHI2/2A + IncN plasmids from six CRECC strains and was co-located with bla NDM-1 or bla IMP-4 in 2/6 plasmids. The genetic environment of mcr-9.1 was composed of IS903B-mcr-9.1-wbuC-IS26 in the five mcr-9.1-harboring-plasmid, but IS1B was located downstream of mcr-9.2 in the pECL414-1 sequence. We also found that the pNDM-068001 plasmid carrying mcr-9.1 could be a hybrid plasmid, formed by a Tn6360-like bla NDM-1 region inserted into an mcr-9.1-positive IncHI2/2A plasmid. A conjugation assay showed that plasmids mediated the co-dissemination of mcr-9 and metallo-β-lactamase (MBL) genes. In addition, we performed induction assays with sub-inhibitory concentrations of colistin and found an increase in the relative expression levels of the mcr-9.2, qseC, and qseB genes, as well as an increase in the minimum inhibitory concentration values of colistin in the CRECC414 strain. These findings provide a basis for studying the regulatory mechanisms of mcr-9 expression and highlight the importance of effective monitoring to assess the prevalence of MBL and mcr-9 co-existing plasmids.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Department of Pathogenic Biology, Jiamusi University School of Basic Medicine, Jiamusi, China
| | - Xiaoyu Wang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Department of Microbiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Haidong Yu
- Department of Microbiology, Shenzhen University General Hospital, Shenzhen, China
| | - Jisheng Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jianmin Wang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Li
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xinhui Li
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Kewang Hu
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Department of Microbiology, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xue Gong
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Gou
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Yang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Chunjiang Li
- Department of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Xiaoli Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Tang B, Wang J, Zheng X, Chang J, Ma J, Wang J, Ji X, Yang H, Ding B. Antimicrobial resistance surveillance of Escherichia coli from chickens in the Qinghai Plateau of China. Front Microbiol 2022; 13:885132. [PMID: 35935206 PMCID: PMC9354467 DOI: 10.3389/fmicb.2022.885132] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/04/2022] [Indexed: 01/19/2023] Open
Abstract
Antimicrobial resistance (AMR) may lead to worldwide epidemics through human activities and natural transmission, posing a global public safety threat. Colistin resistance mediated by the mcr-1 gene is the most prevalent among animal-derived Escherichia coli, and mcr-1-carrying E. coli have been frequently detected in central-eastern China. However, animal-derived E. coli with AMR and the prevalence of mcr-1 in the Qinghai Plateau have been rarely investigated. Herein, 375 stool samples were collected from 13 poultry farms in Qinghai Province and 346 E. coli strains were isolated, of which eight carried mcr-1. The AMR rates of the E. coli strains to ampicillin, amoxicillin/clavulanic acid, and tetracycline were all above 90%, and the resistance rates to ciprofloxacin, cefotaxime, ceftiofur, and florfenicol were above 70%. Multidrug-resistant strains accounted for 95.66% of the total isolates. Twelve E. coli strains showed colistin resistance, from which a total of 46 AMR genes and 36 virulence factors were identified through whole-genome sequencing. The mcr-1 gene resided on the IncHI2, IncI2-type and IncY-type plasmids, and mcr-1 was located in the nikA-nikB-mcr-1-pap2 gene cassette (three strains) or the pap2-mcr-1-ISApl1 structure (one strain). Completed IncI2-type plasmid pMCR4D31–3 sequence (62,259 bp) revealed that it may cause the horizontal transmission of mcr-1 and may increase the risk of its spread through the food chain. Taken together, the AMR of chicken-derived E. coli in the plateau is of concern, suggesting that it is very necessary for us to strengthen the surveillance in various regions under the background of one health.
Collapse
Affiliation(s)
- Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Biao Tang,
| | - Jingge Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Xue Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiang Chang
- State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, MOST-USDA Joint Research Center for Food Safety, Shanghai Jiao Tong University, Shanghai, China
| | - Jiangang Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaofeng Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Baoan Ding
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
- Baoan Ding,
| |
Collapse
|
4
|
Liu Z, Zhao Y, Zhao W, Fei X, Zhai P, Bi W, Li R. Whole-genome sequencing analysis of a rare Salmonella diarizonae clinical strain carrying multiple plasmids and novel gene cassettes. J Glob Antimicrob Resist 2022; 29:339-342. [DOI: 10.1016/j.jgar.2022.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 10/18/2022] Open
|
5
|
Sheng H, Ma J, Yang Q, Li W, Zhang Q, Feng C, Chen J, Qin M, Su X, Wang P, Zhang J, Zhou W, Zhao L, Bai L, Cui S, Yang B. Prevalence and characteristics of mcr-9-positive Salmonella isolated from retail food in China. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Zhou M, Shi Q, Zhang X, Mei L, Ye Y, Fang C, Shang S. Salmonella enterica subsp. diarizonae Harboring ST233, ST1263, and ST1845 in Children. Front Cell Infect Microbiol 2021; 11:727811. [PMID: 34490148 PMCID: PMC8417408 DOI: 10.3389/fcimb.2021.727811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/02/2021] [Indexed: 01/18/2023] Open
Abstract
Objective This study aims to analyze the molecular epidemiology, resistance, and pathogenicity of Salmonella enterica subsp. diarizonae isolated from children. Methods Whole genome sequencing was carried out, and molecular serotypes, sequence types, resistance genes, and virulence genes of S. enterica subsp. diarizonae isolates were analyzed. Antimicrobial susceptibility test was determined by commercialized microdilution method. Results A total of three isolates of S. enterica subsp. diarizonae were isolated during 2015 to 2020. The molecular serotypes of the three strains were 61:c:z35, 61:l,v:1,5,7:[z57], and 65:k:z, respectively, and the sequence types were ST1845, ST233, and ST1263. All the three isolates were susceptible to ceftriaxone, ceftazidime, cefepime, amoxycillin/clavulanic acid, piperacillin/tazobactam, ertapenem, imipenem, levofloxacin, and trimethoprim/sulfamethoxazole. No other resistant gene was detected except aac(6')-Iaa. There were no resistant plasmids detected in all the three isolates. A total of 76 genes were present in all isolates, containing 49 genes of Type III Secretion System (T3SS) mediated by SPI-1and SPI-2, 13 genes of adherence (type 1 fimbriae, Agf, and MisL-related genes), 11 genes of iron uptake (Yersiniabactin), two genes of magnesium uptake, and one gene of typhoid toxin(cdtB). Conclusion The serotypes and sequence types of S. enterica subsp. diarizonae isolates were rarely reported in children; all the S. enterica subsp. diarizonae isolates were susceptible to detected antibiotics; T3SS, adherence, iron uptake, magnesium uptake, and typhoid toxin were responsible for pathogenicity of the S. enterica subsp. diarizonae isolates in children.
Collapse
Affiliation(s)
- Mingming Zhou
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiucheng Shi
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiucai Zhang
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lingling Mei
- Microbiological Laboratory, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yihua Ye
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chao Fang
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Shiqiang Shang
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
7
|
Diaconu EL, Alba P, Feltrin F, Di Matteo P, Iurescia M, Chelli E, Donati V, Marani I, Giacomi A, Franco A, Carfora V. Emergence of IncHI2 Plasmids With Mobilized Colistin Resistance ( mcr)- 9 Gene in ESBL-Producing, Multidrug-Resistant Salmonella Typhimurium and Its Monophasic Variant ST34 From Food-Producing Animals in Italy. Front Microbiol 2021; 12:705230. [PMID: 34335538 PMCID: PMC8322855 DOI: 10.3389/fmicb.2021.705230] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022] Open
Abstract
A collection of 177 genomes of Salmonella Typhimurium and its monophasic variant isolated in 2014-2019 from Italian poultry/livestock (n = 165) and foodstuff (n = 12), previously screened for antimicrobial susceptibility and assigned to ST34 and single-locus variants, were studied in-depth to check the presence of the novel mcr-9 gene and to investigate their genetic relatedness by whole genome sequencing (WGS). The study of accessory resistance genes revealed the presence of mcr-9.1 in 11 ST34 isolates, displaying elevated colistin minimum inhibitory concentration values up to 2 mg/L and also a multidrug-resistant (MDR) profile toward up to seven antimicrobial classes. Five of them were also extended-spectrum beta-lactamases producers (bla SHV - 12 type), mediated by the corresponding antimicrobial resistance (AMR) accessory genes. All mcr-9-positive isolates harbored IncHI2-ST1 plasmids. From the results of the Mash analysis performed on all 177 genomes, the 11 mcr-9-positive isolates fell together in the same subcluster and were all closely related. This subcluster included also two mcr-9-negative isolates, and other eight mcr-9-negative ST34 isolates were present within the same parental branch. All the 21 isolates within this branch presented an IncHI2/2A plasmid and a similar MDR gene pattern. In three representative mcr-9-positive isolates, mcr-9 was demonstrated to be located on different IncHI2/IncHI2A large-size (∼277-297 kb) plasmids, using a combined Illumina-Oxford Nanopore WGS approach. These plasmids were also compared by BLAST analysis with publicly available IncHI2 plasmid sequences harboring mcr-9. In our plasmids, mcr-9 was located in a ∼30-kb region lacking different genetic elements of the typical core structure of mcr-9 cassettes. In this region were also identified different genes involved in heavy metal metabolism. Our results underline how genomics and WGS-based surveillance are increasingly indispensable to achieve better insights into the genetic environment and features of plasmid-mediated AMR, as in the case of such IncHI2 plasmids harboring other MDR genes beside mcr-9, that can be transferred horizontally also to other major Salmonella serovars spreading along the food chain.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Virginia Carfora
- National Reference Laboratory for Antimicrobial Resistance, General Diagnostics Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri,”Rome, Italy
| |
Collapse
|
8
|
Simón Sacristán M, Ybarra de Villavicencio C, Collazos Blanco A, Mayo Montero ME, Ariñez Fernández MDC, Suárez Prieto A, Zamora Cintas MI, Mateo Maestre M. SARS-COV-2 Infection and Specific Antibody Detection on Health Care Workers from a Military Hospital in Madrid, Spain. Curr Microbiol 2021; 78:2910-2915. [PMID: 34156544 PMCID: PMC8217776 DOI: 10.1007/s00284-021-02541-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/12/2021] [Indexed: 01/08/2023]
Abstract
This study aims to assess the COVID-19 seroprevalence in HCW at the Hospital Central de la Defensa Gómez Ulla (HCDGU) (Madrid). From 27 April to 10 June 2020 nasopharyngeal swab and serum samples from employees were processed in order to evaluate their seroprevalence and infective situation. Employees were classified according to their exposure to SARS-CoV-2 infection as high, moderate, and low exposure groups (level 1, level 2, and level 3, respectively). A specific real-time polymerase chain reaction (RT-PCR) was run to diagnose each patient, whereas the qualitative detection of IgG antibodies to SARS-CoV-2 was performed by means of an immunoassay. In total, 2781 HCW were screened. From this sample, 30 employees (1.1%) were infected with SARS-CoV-2 and 450 (16.2%) were positive to SARS-CoV-2-IgG antibodies. The seroprevalence was higher in the high exposure group.The seroprevalence of antibodies against SARS-CoV-2 among employees without any COVID-19 training was higher than in those who received COVID-19 training (14.5% vs 18.6%, P = 0.035). The seroprevalence in military and civilian personnel in level 1 was 18.2% and 20.0%, respectively (P = 0.4616), while in level 2 it was 6.0% and 16.0% (P = 0.0008) and in level 3 it was 16.7% and 10.2% (P = 0.0315). The results from the present study have shown that the high exposure group and HCW not receiving specific training against COVID-19 showed higher seroprevalence. Furthermore, the military employees from this hospital presented low percentage of seroprevalence.
Collapse
Affiliation(s)
- María Simón Sacristán
- Servicio de Microbiología y Parasitología, Hospital Central de la Defensa Gómez Ulla, Madrid, Spain.
| | | | - Ana Collazos Blanco
- Servicio de Microbiología y Parasitología, Hospital Central de la Defensa Gómez Ulla, Madrid, Spain
| | | | | | | | | | - María Mateo Maestre
- Servicio de Microbiología y Parasitología, Hospital Central de la Defensa Gómez Ulla, Madrid, Spain.
| |
Collapse
|