1
|
Li XX, Lu X, Park JW, Cho KB, Nam W. Nonheme Iron Imido Complexes Bearing a Non-Innocent Ligand: A Synthetic Chameleon Species in Oxidation Reactions. Chemistry 2021; 27:17495-17503. [PMID: 34590742 DOI: 10.1002/chem.202103295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 11/07/2022]
Abstract
High-valent iron-imido complexes can perform C-H activation and sulfimidation reactions, but are far less studied than the more ubiquitous iron-oxo species. As case studies, we have looked at a recently published iron(V)-imido ligand π-cation radical complex, which is formally an iron(VI)-imido complex [FeV (NTs)(TAML+. )] (1; NTs=tosylimido), and an iron(V)-imido complex [FeV (NTs)(TAML)]- (2). Using a theoretical approach, we found that they have multiple energetically close-lying electromers, sometimes even without changing spin states, reminiscent of the so-called Compound I in Cytochrome P450. When studying their reactivity theoretically, it is indeed found that their electronic structures may change to perform efficient oxidations, emulating the multi-spin state reactivity in FeIV O systems. This is actually in contrast to the known [FeV (O)(TAML)]- species (3), where the reactions occur only on the ground spin state. We also looked into the whole reaction pathway for the C-H bond activation of 1,4-cyclohexadiene by these intermediates to reproduce the experimentally observed products, including steps that usually attract no interest (neither theoretically nor experimentally) due to their non-rate-limiting status and fast reactivity. A new "clustering non-rebound mechanism" is presented for this C-H activation reaction.
Collapse
Affiliation(s)
- Xiao-Xi Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Xiaoyan Lu
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Jae Woo Park
- Department of Chemistry, Chungbuk National University, Cheongju, 28644, Korea
| | - Kyung-Bin Cho
- Department of Chemistry, Jeonbuk National University, Jeonju, 54896, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
2
|
Theoretical Study on Electronic Structural Properties of Catalytically Reactive Metalloporphyrin Intermediates. Catalysts 2020. [DOI: 10.3390/catal10020224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Metalloporphyrins have attracted great attention in the potential application of biomimetic catalysis. Especially, they were widely investigated as green catalysts in the chemical oxidation of various hydrocarbons through the catalytic activation of molecular oxygen. The structural properties of active central metal ions were reported to play a decisive role in catalytic activity. However, those delicate structural changes are difficult to be experimentally captured or elucidated in detail. Herein, we explored the electronic structural properties of metalloporphyrins (metal porphyrin (PMII, PMIIICl)) and their corresponding catalytically active intermediates (metal(III)-peroxo(PMIII-O2), metal(III)-hydroperoxo(PMIII-OH), and metal(IV)-oxo(PMIV=O), (M=Fe, Mn, and Co)) through the density functional theory method. The ground states of these intermediates were determined based on the assessment of relative energy and the corresponding geometric structures of ground states also further confirmed the stability of energy. Furthermore, our analyses of Mulliken charges and frontier molecular orbitals revealed the potential catalytic behavior of reactive metalloporphyrin intermediates.
Collapse
|
3
|
van Leest NP, Tepaske MA, Oudsen JPH, Venderbosch B, Rietdijk NR, Siegler MA, Tromp M, van der Vlugt JI, de Bruin B. Ligand Redox Noninnocence in [Co III(TAML)] 0/- Complexes Affects Nitrene Formation. J Am Chem Soc 2019; 142:552-563. [PMID: 31846578 PMCID: PMC6956250 DOI: 10.1021/jacs.9b11715] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
The redox noninnocence of the TAML scaffold in cobalt-TAML
(tetra-amido
macrocyclic ligand) complexes has been under debate since 2006. In
this work, we demonstrate with a variety of spectroscopic measurements
that the TAML backbone in the anionic complex [CoIII(TAMLred)]– is truly redox noninnocent
and that one-electron oxidation affords [CoIII(TAMLsq)]. Multireference (CASSCF) calculations show that the electronic
structure of [CoIII(TAMLsq)] is best described as an
intermediate spin (S = 1) cobalt(III) center that
is antiferromagnetically coupled to a ligand-centered radical, affording
an overall doublet (S = 1/2) ground-state. Reaction
of the cobalt(III)-TAML complexes with PhINNs as a nitrene precursor
leads to TAML-centered oxidation and produces nitrene radical complexes
without oxidation of the metal ion. The ligand redox state (TAMLred or TAMLsq) determines whether mono- or bis-nitrene
radical complexes are formed. Reaction of [CoIII(TAMLsq)] or [CoIII(TAMLred)]– with PhINNs results in the formation of [CoIII(TAMLq)(N•Ns)] and [CoIII(TAMLq)(N•Ns)2]–, respectively. Herein, ligand-to-substrate
single-electron transfer results in one-electron-reduced Fischer-type
nitrene radicals (N•Ns–) that are intermediates in catalytic nitrene transfer to styrene.
These nitrene radical species were characterized by EPR, XANES, and
UV–vis spectroscopy, high-resolution mass spectrometry, magnetic
moment measurements, and supporting CASSCF calculations.
Collapse
Affiliation(s)
| | | | | | | | | | - Maxime A Siegler
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | | | | | | |
Collapse
|
4
|
Hong S, Lu X, Lee YM, Seo MS, Ohta T, Ogura T, Clémancey M, Maldivi P, Latour JM, Sarangi R, Nam W. Achieving One-Electron Oxidation of a Mononuclear Nonheme Iron(V)-Imido Complex. J Am Chem Soc 2017; 139:14372-14375. [PMID: 28960973 DOI: 10.1021/jacs.7b08161] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A mononuclear nonheme iron(V)-imido complex bearing a tetraamido macrocyclic ligand (TAML), [FeV(NTs)(TAML)]- (1), was oxidized by one-electron oxidants, affording formation of an iron(V)-imido TAML cation radical species, [FeV(NTs)(TAML+•)] (2); 2 is a diamagnetic (S = 0) complex, resulting from the antiferromagnetic coupling of the low-spin iron(V) ion (S = 1/2) with the one-electron oxidized ligand (TAML+•). 2 is a competent oxidant in C-H bond functionalization and nitrene transfer reaction, showing that the reactivity of 2 is greater than that of 1.
Collapse
Affiliation(s)
- Seungwoo Hong
- Department of Chemistry and Nano Science, Ewha Womans University , Seoul 03760, Korea.,Department of Chemistry, Sookmyung Women's University , Seoul 04310, Korea
| | - Xiaoyan Lu
- Department of Chemistry and Nano Science, Ewha Womans University , Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University , Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University , Seoul 03760, Korea
| | - Takehiro Ohta
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH LP Center , Hyogo 679-5148, Japan
| | - Takashi Ogura
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH LP Center , Hyogo 679-5148, Japan
| | - Martin Clémancey
- LCBM/PMB and CEA/BIG/CBM/and CNRS UMR 5249, Université Grenoble Alpes , Grenoble 38054, France
| | - Pascale Maldivi
- CEA, CNRS, INAC, SYMMES, Université Grenoble Alpes , Grenoble 38000, France
| | - Jean-Marc Latour
- LCBM/PMB and CEA/BIG/CBM/and CNRS UMR 5249, Université Grenoble Alpes , Grenoble 38054, France
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory , California 94025, United States
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University , Seoul 03760, Korea.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou 730000, China
| |
Collapse
|
5
|
Caulton KG. Systematics and Future Projections Concerning Redox‐Noninnocent Amide/Imine Ligands. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201100623] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kenneth G. Caulton
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA, Fax: +1‐812‐855‐0985
| |
Collapse
|
6
|
Alonso PJ, Arauzo AB, García-Monforte MA, Martín A, Menjón B, Rillo C, Tomás M. Homoleptic organoderivatives of high-valent nickel(III). Chemistry 2009; 15:11020-30. [PMID: 19760717 DOI: 10.1002/chem.200901259] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Homoleptic perhalophenyl derivatives of divalent nickel complexes with the general formula [NBu(4)](2)[Ni(II)(C(6)X(5))(4)] [X=F (1), Cl (2)] have been prepared by low-temperature treatment of the halo-complex precursor [NBu(4)](2)[NiBr(4)] with the corresponding organolithium reagent LiC(6)X(5). Compounds 1 and 2 are electrochemically related by reversible one-electron exchange processes with the corresponding organometallate(III) compounds [NBu(4)][Ni(III)(C(6)X(5))(4)] [X=F (3), Cl (4)]. The potentials of the [Ni(III)(C(6)X(5))(4)](-)/[Ni(II)(C(6)X(5))(4)](2-) couples are +0.07 and -0.11 V for X=F or Cl, respectively. Compounds 3 and 4 have also been prepared and isolated in good yield by chemical oxidation of 1 or 2 with bromine or the amminium salt [N(C(6)H(4)Br-4)(3)][SbCl(6)]. The [Ni(III)(C(6)X(5))(4)](-) species have SP-4 structures in the salts 3 and 4, as established by single-crystal X-ray diffraction methods. The [Ni(II)(C(6)F(5))(4)](2-) ion in the parent compound 1 has also been found to exhibit a rather similar SP-4 structure. According to their SP-4 geometry, the Ni(III) compounds (d(7)) behave as S=1/2 systems both at microscopic (EPR) and macroscopic levels (ac and dc magnetization measurements). The spin Hamiltonian parameters obtained from the analysis of the magnetic behavior of 3 and 4 within the framework of ligand field theory show that the unpaired electron is centered mainly on the metal atom, with >97 % estimated d(z(2) ) contribution. Thermal decomposition of 3 and 4 proceeds with formation of the corresponding C(6)X(5)--C(6)X(5) coupling compounds.
Collapse
Affiliation(s)
- Pablo J Alonso
- Instituto de Ciencia de Materiales de Aragón (I.C.M.A.), Universidad de Zaragoza-C.S.I.C. C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | | | | | | | | | | | | |
Collapse
|
7
|
Ryabov AD, Collins TJ. Mechanistic considerations on the reactivity of green FeIII-TAML activators of peroxides. ADVANCES IN INORGANIC CHEMISTRY 2009. [DOI: 10.1016/s0898-8838(09)00208-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Popescu DL, Chanda A, Stadler M, de Oliveira FT, Ryabov AD, Münck E, Bominaar EL, Collins TJ. High-valent first-row transition-metal complexes of tetraamido (4N) and diamidodialkoxido or diamidophenolato (2N/2O) ligands: Synthesis, structure, and magnetochemistry. Coord Chem Rev 2008. [DOI: 10.1016/j.ccr.2007.11.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Chanda A, Shan X, Chakrabarti M, Ellis WC, Popescu DL, Tiago de Oliveira F, Wang D, Que L, Collins TJ, Münck E, Bominaar EL. (TAML)FeIV O complex in aqueous solution: synthesis and spectroscopic and computational characterization. Inorg Chem 2008; 47:3669-78. [PMID: 18380453 DOI: 10.1021/ic7022902] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, we reported the characterization of the S = (1)/ 2 complex [Fe (V)(O)B*] (-), where B* belongs to a family of tetraamido macrocyclic ligands (TAMLs) whose iron complexes activate peroxides for environmentally useful applications. The corresponding one-electron reduced species, [Fe (IV)(O)B*] (2-) ( 2), has now been prepared in >95% yield in aqueous solution at pH > 12 by oxidation of [Fe (III)(H 2O)B*] (-) ( 1), with tert-butyl hydroperoxide. At room temperature, the monomeric species 2 is in a reversible, pH-dependent equilibrium with dimeric species [B*Fe (IV)-O-Fe (IV)B*] (2-) ( 3), with a p K a near 10. In zero field, the Mössbauer spectrum of 2 exhibits a quadrupole doublet with Delta E Q = 3.95(3) mm/s and delta = -0.19(2) mm/s, parameters consistent with a S = 1 Fe (IV) state. Studies in applied magnetic fields yielded the zero-field splitting parameter D = 24(3) cm (-1) together with the magnetic hyperfine tensor A/ g nbeta n = (-27, -27, +2) T. Fe K-edge EXAFS analysis of 2 shows a scatterer at 1.69 (2) A, a distance consistent with a Fe (IV)O bond. DFT calculations for [Fe (IV)(O)B*] (2-) reproduce the experimental data quite well. Further significant improvement was achieved by introducing hydrogen bonding of the axial oxygen with two solvent-water molecules. It is shown, using DFT, that the (57)Fe hyperfine parameters of complex 2 give evidence for strong electron donation from B* to iron.
Collapse
Affiliation(s)
- Arani Chanda
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bernasconi L, Baerends EJ. The EDTA Complex of Oxidoiron(IV) as Realisation of an Optimal Ligand Environment for High Activity of FeO2+. Eur J Inorg Chem 2008. [DOI: 10.1002/ejic.200701135] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Bernasconi L, Louwerse MJ, Baerends EJ. The Role of Equatorial and Axial Ligands in Promoting the Activity of Non-Heme Oxidoiron(IV) Catalysts in Alkane Hydroxylation. Eur J Inorg Chem 2007. [DOI: 10.1002/ejic.200601238] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Ghosh A. Transition metal spin state energetics and noninnocent systems: challenges for DFT in the bioinorganic arena. J Biol Inorg Chem 2006; 11:712-24. [PMID: 16841211 DOI: 10.1007/s00775-006-0135-4] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 06/14/2006] [Indexed: 11/25/2022]
Abstract
Although density functional theory (DFT) provides a generally good description of transition metal systems, we have identified several cases, involving Fe(III) porphyrins and related systems, where common functionals fail to correctly describe the energetics of the different low-lying spin states. The question of metal- versus ligand-centered oxidation in high-valent transition metal complexes is also a challenging one for DFT calculations, as I have tried to illustrate with examples from among porphyrin, corrole, biliverdine, and NO complexes. In a number of cases, I have compared results obtained with different exchange-correlation functionals; in addition, I have added a discussion on the relative performance of pure versus hybrid functionals. Finally, I have offered some thoughts on the role that traditional wavefunction-based ab initio methods, now essentially absent from the bioinorganic arena, might play in the future.
Collapse
Affiliation(s)
- Abhik Ghosh
- Department of Chemistry, University of Tromsø, 9037 Tromsø, Norway.
| |
Collapse
|