1
|
Amitouche F, Saad F, Tazibt S, Bouarab S, Vega A. Structural and Electronic Rearrangements in Fe 2S 2, Fe 3S 4, and Fe 4S 4 Atomic Clusters under the Attack of NO, CO, and O 2. J Phys Chem A 2019; 123:10919-10929. [PMID: 31794213 DOI: 10.1021/acs.jpca.9b08201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report results, based on density functional theory-generalized gradient approximation calculations, that shed light on how NO, CO, and O2 interact with Fe2S2, Fe3S4, and Fe4S4 clusters and how they modify their structural and electronic properties. The interest in these small iron sulfide clusters comes from the fact that they are at the protein cores and that elucidating fundamental aspects of their interaction with those light molecules which are known to modify their functionality may help in understanding complex behaviors in biological systems. CO and NO are found to bind molecularly, leading to moderate relaxations in the clusters, but nevertheless to changes in the spin-polarized electronic structure and related properties. In contrast, dissociative chemisorption of O2 is much more stable than molecular adsorption, giving rise to significant structural distortions, particularly in Fe4S4 that splits into two Fe2S2 subclusters. As a consequence, oxygen tends to strongly reduce the spin polarization in Fe and to weaken the Fe-Fe interaction inducing antiparallel couplings that, in the case of Fe4S4, clearly arise from indirect Fe-Fe exchange coupling mediated by O. The three molecules (particularly CO) enhance the stability of the iron-sulfur clusters. This increase is noticeably more pronounced for Fe2S2 than for the other iron-sulfur clusters of different compositions, a result that correlates with the fact that in recent experiments of CO reaction with FemSm (m = 1-4), the Fe2S2CO product results as a prominent one.
Collapse
Affiliation(s)
| | | | | | | | - Andrés Vega
- Departamento de Física Teórica, Atómica y Óptica , Universidad de Valladolid , Paseo Belèn 7 , E-47011 Valladolid , Spain
| |
Collapse
|
2
|
Mehra R, Kepp KP. Contribution of substrate reorganization energies of electron transfer to laccase activity. Phys Chem Chem Phys 2019; 21:15805-15814. [DOI: 10.1039/c9cp01012b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Laccase substrate reorganization energies computed by DFT show that electronic structure changes of these substrates contribute to enzymatic proficiency.
Collapse
Affiliation(s)
- Rukmankesh Mehra
- Technical University of Denmark
- DTU Chemistry
- 2800 Kgs. Lyngby
- Denmark
| | - Kasper P. Kepp
- Technical University of Denmark
- DTU Chemistry
- 2800 Kgs. Lyngby
- Denmark
| |
Collapse
|
3
|
Nielsen MT, Moltved KA, Kepp KP. Electron Transfer of Hydrated Transition-Metal Ions and the Electronic State of Co3+(aq). Inorg Chem 2018; 57:7914-7924. [DOI: 10.1021/acs.inorgchem.8b01011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Mathias T. Nielsen
- DTU Chemistry, Technical University of Denmark, Building 206, Kongens Lyngby 2800, Denmark
| | - Klaus A. Moltved
- DTU Chemistry, Technical University of Denmark, Building 206, Kongens Lyngby 2800, Denmark
| | - Kasper P. Kepp
- DTU Chemistry, Technical University of Denmark, Building 206, Kongens Lyngby 2800, Denmark
| |
Collapse
|
4
|
Zhang L, Kepp KP, Ulstrup J, Zhang J. Redox Potentials and Electronic States of Iron Porphyrin IX Adsorbed on Single Crystal Gold Electrode Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3610-3618. [PMID: 29510058 DOI: 10.1021/acs.langmuir.8b00163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Metalloporphyrins are active sites in metalloproteins and synthetic catalysts. They have also been studied extensively by electrochemistry as well as being prominent targets in electrochemical scanning tunneling microscopy (STM). Previous studies of FePPIX adsorbed on graphite and alkylthiol modified Au electrodes showed a pair of reversible Fe(III/II)PPIX peaks at about -0.41 V (vs NHE) at high solution pH. We recently used iron protoporphyrin IX (FePPIX) as an intercalating probe for long-range electrochemical electron transfer through a G-quadruplex oligonucleotide (DNAzyme); this study disclosed two, rather than a single pair of voltammetric peaks with a new and dominating peak, shifted 200 mV positive relative to the ≈-0.4 V peak. Prompted by this unexpected observation, we report here a study of the voltammetry of FePPIX itself on single-crystal Au(111), (100), and (110) and polycrystalline Au electrode surfaces. In all cases the dominating pair of new Fe(III/II)PPIX redox peaks, shifted positively by more than 200 mV compared to those of previous studies appeared. This observation is supported by density functional theory (DFT) which shows that strong dispersion forces in the FePPIX/Au electronic interaction drive the midpoint potential toward positive values. The FePPIX spin states depend on interaction with the Au(111) interface, converting all the Fe(II)/(III)PPIX species into low-spin states. These results support electrochemical evidence for the nature of the electronic coupling between FePPIX and Au-surfaces, and the electronic states of adsorbate molecules, with a bearing also on recent reports of magnetic FePPIX/Au(111) interactions in ultrahigh vacuum (UHV).
Collapse
Affiliation(s)
- Ling Zhang
- Department of Chemistry , Technical University of Denmark , Building 207, Kemitorvet, DK-2800 Kgs. Lyngby , Denmark
| | - Kasper P Kepp
- Department of Chemistry , Technical University of Denmark , Building 207, Kemitorvet, DK-2800 Kgs. Lyngby , Denmark
| | - Jens Ulstrup
- Department of Chemistry , Technical University of Denmark , Building 207, Kemitorvet, DK-2800 Kgs. Lyngby , Denmark
| | - Jingdong Zhang
- Department of Chemistry , Technical University of Denmark , Building 207, Kemitorvet, DK-2800 Kgs. Lyngby , Denmark
| |
Collapse
|
5
|
|
6
|
Lauterbach L, Gee LB, Pelmenschikov V, Jenney FE, Kamali S, Yoda Y, Adams MWW, Cramer SP. Characterization of the [3Fe-4S](0/1+) cluster from the D14C variant of Pyrococcus furiosus ferredoxin via combined NRVS and DFT analyses. Dalton Trans 2016; 45:7215-9. [PMID: 27063792 PMCID: PMC4940129 DOI: 10.1039/c5dt04760a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The D14C variant of Pyrococcus furiosus ferredoxin provides an extraordinary framework to investigate a [3Fe-4S] cluster at two oxidation levels and compare the results to its physiologic [4Fe-4S] counterpart in the very same protein. Our spectroscopic and computational study reveals vibrational property changes related to the electronic and structural aspects of both Fe-S clusters.
Collapse
Affiliation(s)
- Lars Lauterbach
- Department of Chemistry, University of California, Davis, CA 95616, USA and Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany.
| | - Leland B Gee
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | | | - Francis E Jenney
- Georgia Campus, Philadelphia College of Osteopathic Medicine, Suwanee, GA 30024, USA
| | - Saeed Kamali
- Department of Chemistry, University of California, Davis, CA 95616, USA and Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee Space Institute, Tullahoma, TN 37388, USA
| | | | - Michael W W Adams
- Department of Biochemistry & Molecular Biology, Life Sciences Building, University of Georgia, Athens, GA 30602, USA
| | - Stephen P Cramer
- Department of Chemistry, University of California, Davis, CA 95616, USA and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
7
|
Mortensen SR, Kepp KP. Spin Propensities of Octahedral Complexes From Density Functional Theory. J Phys Chem A 2015; 119:4041-50. [DOI: 10.1021/acs.jpca.5b01626] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sara R. Mortensen
- DTU Chemistry, Technical University of Denmark, Building 206, Anker Engelunds Vej 1, 2800 Kongens Lyngby, Denmark
| | - Kasper P. Kepp
- DTU Chemistry, Technical University of Denmark, Building 206, Anker Engelunds Vej 1, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
8
|
Kepp KP. Halide binding and inhibition of laccase copper clusters: the role of reorganization energy. Inorg Chem 2014; 54:476-83. [PMID: 25532722 DOI: 10.1021/ic5021466] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Laccase-like proteins are multicopper oxidases involved in several biological and industrial processes. Their application is commonly limited due to inhibition by fluoride and chloride, and as-isolated proteins are often substantially activated by heat, suggesting that multiple redox states can complicate characterization. Understanding these processes at the molecular level is thus desirable but theoretically unexplored. This paper reports systematic calculations of geometries, reorganization energies, and ionization energies for all partly oxidized states of the trinuclear copper clusters in realistic models with ∼200 atoms. Corrections for scalar-relativistic effects, dispersion, and thermal effects were estimated. Fluoride, chloride, hydroxide, or water was bound to the T2 copper site of the oxidized resting state, and the peroxo intermediate was also computed for reference. Antiferromagnetic coupling, assigned oxidation states, and general structures were consistent with known spectroscopic data. The computations show that (i) ligands bound to the T2 site substantially increase the reorganization energy of the second reduction of the resting state and reduce the redox potentials, providing a possible mechanism for inhibition; (ii) the reorganization energy is particularly large for F(-) but also high for Cl(-), consistent with the experimental tendency of inhibition; (iii) reduction leads to release of Cl(-) from the T2 site, suggesting a mechanism for heat/reduction activation of laccases by dissociation of inhibiting halides or hydroxide from T2.
Collapse
Affiliation(s)
- Kasper P Kepp
- DTU Chemistry, Technical University of Denmark , Building 206, 2800 Kgs. Lyngby, DK Denmark
| |
Collapse
|
9
|
Kepp KP. Co-C dissociation of adenosylcobalamin (coenzyme B12): role of dispersion, induction effects, solvent polarity, and relativistic and thermal corrections. J Phys Chem A 2014; 118:7104-17. [PMID: 25116644 DOI: 10.1021/jp503607k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quantum-chemical cluster modeling is challenged in the limit of large, soft systems by the effects of dispersion and solvent, and well as other physical interactions. Adenosylcobalamin (AdoCbl, coenzyme B12), as one of the most complex cofactors in life, constitutes such a challenge. The cleavage of its unique organometallic Co-C bond has inspired multiple studies of this cofactor. This paper reports the fully relaxed potential energy surface of Co-C cleavage of AdoCbl, including for the first time all side-chain interactions with the dissociating Ado group. Various methods and corrections for dispersion, relativistic effects, solvent polarity, basis set superposition error, and thermal and vibrational effects were investigated, totaling more than 550 single-point energies for the large model. The results show immense variability depending on method, including solvation, functional type, and dispersion, challenging the conceived accuracy of methods used for such systems. In particular, B3LYP-D3 seems to severely underestimate the Co-C bond strength, consistent with previous results, and BP86 remains accurate for cobalamins when dispersion interactions are accounted for.
Collapse
Affiliation(s)
- Kasper P Kepp
- DTU Chemistry, Technical University of Denmark , Building 206, Kgs. Lyngby, DK-2800, Denmark
| |
Collapse
|
10
|
Marenich AV, Ho J, Coote ML, Cramer CJ, Truhlar DG. Computational electrochemistry: prediction of liquid-phase reduction potentials. Phys Chem Chem Phys 2014; 16:15068-106. [PMID: 24958074 DOI: 10.1039/c4cp01572j] [Citation(s) in RCA: 322] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This article reviews recent developments and applications in the area of computational electrochemistry. Our focus is on predicting the reduction potentials of electron transfer and other electrochemical reactions and half-reactions in both aqueous and nonaqueous solutions. Topics covered include various computational protocols that combine quantum mechanical electronic structure methods (such as density functional theory) with implicit-solvent models, explicit-solvent protocols that employ Monte Carlo or molecular dynamics simulations (for example, Car-Parrinello molecular dynamics using the grand canonical ensemble formalism), and the Marcus theory of electronic charge transfer. We also review computational approaches based on empirical relationships between molecular and electronic structure and electron transfer reactivity. The scope of the implicit-solvent protocols is emphasized, and the present status of the theory and future directions are outlined.
Collapse
Affiliation(s)
- Aleksandr V Marenich
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, MN 55455-0431, USA.
| | | | | | | | | |
Collapse
|
11
|
Carvalho ATP, Swart M. Electronic Structure Investigation and Parametrization of Biologically Relevant Iron–Sulfur Clusters. J Chem Inf Model 2014; 54:613-20. [DOI: 10.1021/ci400718m] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexandra T. P. Carvalho
- Institut
de Química Computacional i Catàlisi and Departament
de Química, Universitat de Girona, 17071 Girona, Spain
- Department
of Cell and Molecular Biology, Computational and Systems Biology, Box 596, 751 24 Uppsala, Sweden
| | - Marcel Swart
- Institut
de Química Computacional i Catàlisi and Departament
de Química, Universitat de Girona, 17071 Girona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
12
|
Abstract
The origin of the tolerance of a subclass of [NiFe]-hydrogenases to the presence of oxygen was unclear for a long time. Recent spectroscopic studies showed a conserved active site between oxygen-sensitive and oxygen-tolerant hydrogenases, and modifications in the vicinity of the active site in the large subunit could be excluded as the origin of catalytic activity even in the presence of molecular oxygen. A combination of bioinformatics and protein structural modelling revealed an unusual co-ordination motif in the vicinity of the proximal Fe-S cluster in the small subunit. Mutational experiments confirmed the relevance of two additional cysteine residues for the oxygen-tolerance. This new binding motif can be used to classify sequences from [NiFe]-hydrogenases according to their potential oxygen-tolerance. The X-ray structural analysis of the reduced form of the enzyme displayed a new type of [4Fe-3S] cluster co-ordinated by six surrounding cysteine residues in a distorted cubanoid geometry. The unusual electronic structure of the proximal Fe-S cluster can be analysed using the broken-symmetry approach and gave results in agreement with experimental Mößbauer studies. An electronic effect of the proximal Fe-S cluster on the remote active site can be detected and quantified. In the oxygen-tolerant hydrogenases, the hydride occupies an asymmetric binding position in the Ni-C state. This may rationalize the more facile activation and catalytic turnover in this subclass of enzymes.
Collapse
|
13
|
Kepp KP. O2Binding to Heme is Strongly Facilitated by Near-Degeneracy of Electronic States. Chemphyschem 2013; 14:3551-8. [DOI: 10.1002/cphc.201300658] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Indexed: 11/06/2022]
|
14
|
|
15
|
Probing the structural, electronic and magnetic properties of multicenter Fe2S2 0/−, Fe3S4 0/− and Fe4S4 0/− clusters. J Mol Model 2012; 19:1527-36. [DOI: 10.1007/s00894-012-1714-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/27/2012] [Indexed: 10/27/2022]
|
16
|
Asatryan R, Bozzelli JW, Ruckenstein E. Dihydrogen Catalysis: A Degradation Mechanism for N2-Fixation Intermediates. J Phys Chem A 2012; 116:11618-42. [DOI: 10.1021/jp303692v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rubik Asatryan
- Department of Chemical and Biological
Engineering, State University of New York, Buffalo, New York 14260, United States
- Department of Chemistry and
Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Joseph W. Bozzelli
- Department of Chemistry and
Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Eli Ruckenstein
- Department of Chemical and Biological
Engineering, State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
17
|
Smith DMA, Xiong Y, Straatsma TP, Rosso KM, Squier TC. Force-Field Development and Molecular Dynamics of [NiFe] Hydrogenase. J Chem Theory Comput 2012; 8:2103-14. [PMID: 26593842 DOI: 10.1021/ct300185u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Classical molecular force-field parameters describing the structure and motion of metal clusters in [NiFe] hydrogenase enzymes can be used to compare the dynamics and thermodynamics of [NiFe] under different oxidation, protonation, and ligation circumstances. Using density functional theory (DFT) calculations of small model clusters representative of the active site and the proximal, medial, and distal Fe/S metal centers and their attached protein side chains, we have calculated classical force-field parameters for [NiFe] in reduced and oxidized states, including internal coordinates, force constants, and atom-centered charges. Derived force constants revealed that cysteinate ligands bound to the metal ions are more flexible in the Ni-B active site, which has a bridging hydroxide ligand, than in the Ni-C active site, which has a bridging hydride. Ten nanosecond all-atom, explicit-solvent MD simulations of [NiFe] hydrogenase in oxidized and reduced catalytic states established the stability of the derived force-field parameters in terms of Cα and metal cluster fluctuations. Average active site structures from the protein MD simulations are consistent with [NiFe] structures from the Protein Data Bank, suggesting that the derived force-field parameters are transferrable to other hydrogenases beyond the structure used for testing. A comparison of experimental H2-production rates demonstrated a relationship between cysteinate side chain rotation and activity, justifying the use of a fully dynamic model of [NiFe] metal cluster motion.
Collapse
Affiliation(s)
- Dayle M A Smith
- Pacific Northwest National Laboratory, P.O. Box 999, MSIN J4-33, Richland, Washington 99352, United States
| | - Yijia Xiong
- Pacific Northwest National Laboratory, P.O. Box 999, MSIN J4-33, Richland, Washington 99352, United States
| | - T P Straatsma
- Pacific Northwest National Laboratory, P.O. Box 999, MSIN J4-33, Richland, Washington 99352, United States
| | - Kevin M Rosso
- Pacific Northwest National Laboratory, P.O. Box 999, MSIN J4-33, Richland, Washington 99352, United States
| | - Thomas C Squier
- Pacific Northwest National Laboratory, P.O. Box 999, MSIN J4-33, Richland, Washington 99352, United States
| |
Collapse
|
18
|
Greisen P, Jespersen JB, Kepp KP. Metallothionein Zn2+- and Cu2+-clusters from first-principles calculations. Dalton Trans 2011; 41:2247-56. [PMID: 22183579 DOI: 10.1039/c1dt11785h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Detailed electronic structures of Zn(II) and Cu(II) clusters from metallothioneins (MT) have been obtained using density functional theory (DFT), in order to investigate how oxidative stress-caused Cu(II) intermediates affect Zn-binding to MT and cooperatively lead to Cu(I)MT. The inferred accuracy is ∼0.02-0.03 Å for metal-thiolate bond lengths for the models that are the most realistic MT models so far studied by DFT. We find terminal Zn-S and Cu-S bond lengths of 2.35-2.38 Å and 2.30-2.34 Å, whereas bridging M-S bonds are 0.05-0.11 Å longer. This electronic effect is also reflected in changes in electron density on bridging sulfurs. Various imposed backbone constraints quantify the sensitivity of cluster electronic structure towards protein conformational changes. The large negative charge densities of the clusters are central to MT function, and the smaller β-clusters are more prone to modification. Oxidative stress-associated Cu(II) binding weakens the Zn-S bonds and is thus likely to impair the Zn(II) transfer function of MTs, providing a mechanism for cooperative Cu(II) binding leading to loss of Zn(II) and dysfunctional Cu(I)MT clusters.
Collapse
Affiliation(s)
- Per Greisen
- Technical University of Denmark, DTU Physics, 2800, Kongens Lyngby, Denmark
| | | | | |
Collapse
|
19
|
Kepp KP. Full quantum-mechanical structure of the human protein Metallothionein-2. J Inorg Biochem 2011; 107:15-24. [PMID: 22178664 DOI: 10.1016/j.jinorgbio.2011.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 11/02/2011] [Accepted: 11/08/2011] [Indexed: 01/18/2023]
Abstract
Metallothioneins (MT) are small, metal-binding proteins with diverse functions related to metal ion homeostasis. This paper presents the full 384-388-atom structures of the two native Zn(II)- and the Cd(II)-containing domains of human MT2, optimized with density functional theory. The presented structures are accurate to ~0.03 Å for bond lengths and thus provide new physical insight into the detailed electronic structures of MTs, in particular with accurate accounts of bridging vs. terminal bonds not available from NMR or EXAFS. The MT protein enhances the asymmetry, as compared to the protein-free clusters, causing a hierarchy in binding that most likely allows MTs to transfer ions to multiple targets in vivo. The protein polarization is substantial and occurs primarily via the terminal sulfurs, a key mechanism in providing domain-specific electronic structures. The β-domain polarizes its smaller cluster less on average, due to its less polarizable, higher negative charge density, as reflected in longer MS bond lengths and smaller bond orders. This may explain why MT2β is more reactive and dynamic and why MTs have evolved two different-size, asymmetric domains with different metal binding affinities fit for different molecular targets of metal ion transfer.
Collapse
Affiliation(s)
- Kasper P Kepp
- Technical University of Denmark, DTU Chemistry, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
20
|
Jensen KP, Rykær M. The building blocks of metallothioneins: heterometallic Zn2+ and Cd2+ clusters from first-principles calculations. Dalton Trans 2010; 39:9684-95. [DOI: 10.1039/c0dt00087f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Jensen KP, Bell, CB, Clay MD, Solomon EI. Peroxo-Type Intermediates in Class I Ribonucleotide Reductase and Related Binuclear Non-Heme Iron Enzymes. J Am Chem Soc 2009; 131:12155-71. [DOI: 10.1021/ja809983g] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kasper P. Jensen
- Department of Chemistry, Stanford University, 333 Campus Drive, Mudd Building, Stanford, California 94305-5080, and DTU-Chemistry, Technical University of Denmark, Building 207, DK 2800 Kgs. Lyngby, Denmark
| | - Caleb B. Bell,
- Department of Chemistry, Stanford University, 333 Campus Drive, Mudd Building, Stanford, California 94305-5080, and DTU-Chemistry, Technical University of Denmark, Building 207, DK 2800 Kgs. Lyngby, Denmark
| | - Michael D. Clay
- Department of Chemistry, Stanford University, 333 Campus Drive, Mudd Building, Stanford, California 94305-5080, and DTU-Chemistry, Technical University of Denmark, Building 207, DK 2800 Kgs. Lyngby, Denmark
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, 333 Campus Drive, Mudd Building, Stanford, California 94305-5080, and DTU-Chemistry, Technical University of Denmark, Building 207, DK 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
22
|
Schenk S, Reiher M. Ligands for Dinitrogen Fixation at Schrock-Type Catalysts. Inorg Chem 2009; 48:1638-48. [DOI: 10.1021/ic802037w] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Stephan Schenk
- Laboratorium für Physikalische Chemie, ETH Zürich, Wolfgang-Pauli-Str. 10, CH-8093 Zürich, Switzerland
| | - Markus Reiher
- Laboratorium für Physikalische Chemie, ETH Zürich, Wolfgang-Pauli-Str. 10, CH-8093 Zürich, Switzerland
| |
Collapse
|
23
|
Jensen KP, Ooi BL, Christensen HEM. Computational Chemistry of Modified [MFe3S4] and [M2Fe2S4] Clusters: Assessment of Trends in Electronic Structure and Properties. J Phys Chem A 2008; 112:12829-41. [DOI: 10.1021/jp8014782] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kasper P. Jensen
- Department of Chemistry, Technical University of Denmark, Building 207, 2800 Kgs. Lyngby, DK - Denmark
| | - Bee-Lean Ooi
- Department of Chemistry, Technical University of Denmark, Building 207, 2800 Kgs. Lyngby, DK - Denmark
| | - Hans E. M. Christensen
- Department of Chemistry, Technical University of Denmark, Building 207, 2800 Kgs. Lyngby, DK - Denmark
| |
Collapse
|