1
|
Alajrawy OI, Almhmdi AA. Dioxomolybdenum (VI) and oxomolybdenum (IV) complexes with N, O, and S bidentate ligands, syntheses, spectral characterization, and DFT studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
2
|
Ehweiner MA, Wiedemaier F, Belaj F, Mösch-Zanetti NC. Oxygen Atom Transfer Reactivity of Molybdenum(VI) Complexes Employing Pyrimidine- and Pyridine-2-thiolate Ligands. Inorg Chem 2020; 59:14577-14593. [PMID: 32951421 DOI: 10.1021/acs.inorgchem.0c02412] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Four dioxidomolybdenum(VI) complexes of the general structure [MoO2L2] employing the S,N-bidentate ligands pyrimidine-2-thiolate (PymS, 1), pyridine-2-thiolate (PyS, 2), 4-methylpyridine-2-thiolate (4-MePyS, 3) and 6-methylpyridine-2-thiolate (6-MePyS, 4) were synthesized and characterized by spectroscopic means and single-crystal X-ray diffraction analysis (2-4). Complexes 1-4 were reacted with PPh3 and PMe3, respectively, to investigate their oxygen atom transfer (OAT) reactivity and catalytic applicability. Reduction with PPh3 leads to symmetric molybdenum(V) dimers of the general structure [Mo2O3L4] (6-9). Kinetic studies showed that the OAT from [MoO2L2] to PPh3 is 5 times faster for the PymS system than for the PyS and 4-MePyS systems. The reaction of complexes 1-3 with PMe3 gives stable molybdenum(IV) complexes of the structure [MoOL2(PMe3)2] (10-12), while reduction of [MoO2(6-MePyS)2] (4) yields [MoO(6-MePyS)2(PMe3)] (13) with only one PMe3 coordinated to the metal center. The activity of complexes 1-4 in catalytic OAT reactions involving Me2SO and Ph2SO as oxygen donors and PPh3 as an oxygen acceptor has been investigated to assess the influence of the varied ligand frameworks on the OAT reaction rates. It was found that [MoO2(PymS)2] (1) and [MoO2(6-MePyS)2] (4) are similarly efficient catalysts, while complexes 2 and 3 are only moderately active. In the catalytic oxidation of PMe3 with Me2SO, complex 4 is the only efficient catalyst. Complexes 1-4 were also found to catalytically reduce NO3- with PPh3, although their reactivity is inhibited by further reduced species such as NO, as exemplified by the formation of the nitrosyl complex [Mo(NO)(PymS)3] (14), which was identified by single-crystal X-ray diffraction analysis. Computed ΔG⧧ values for the very first step of the OAT were found to be lower for complexes 1 and 4 than for 2 and 3, explaining the difference in catalytic reactivity between the two pairs and revealing the requirement for an electron-deficient ligand system.
Collapse
Affiliation(s)
- Madeleine A Ehweiner
- Institute of Chemistry, Inorganic Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
| | - Fabian Wiedemaier
- Institute of Chemistry, Physical and Theoretical Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Ferdinand Belaj
- Institute of Chemistry, Inorganic Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
| | - Nadia C Mösch-Zanetti
- Institute of Chemistry, Inorganic Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
| |
Collapse
|
3
|
Paudel J, Pokhrel A, Kirk ML, Li F. Remote Charge Effects on the Oxygen-Atom-Transfer Reactivity and Their Relationship to Molybdenum Enzymes. Inorg Chem 2019; 58:2054-2068. [PMID: 30673233 DOI: 10.1021/acs.inorgchem.8b03093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the syntheses, crystal structures, and characterization of the novel cis-dioxomolybdenum(VI) complexes [Tpm*MoVIO2Cl](MoO2Cl3) (1) and [Tpm*MoVIO2Cl](ClO4) (2), which are supported by the charge-neutral tris(3,5-dimethyl-1-pyrazolyl)methane (Tpm*) ligand. A comparison between isostructural [Tpm*MoVIO2Cl]+ and Tp*MoVIO2Cl [Tp* = hydrotris(3,5-dimethyl-1-pyrazolyl)borate] reveals the effects of one unit of overall charge difference on their spectroscopic and electrochemical properties, geometric and electronic structures, and O-atom-transfer (OAT) reactivities, providing new insight into pyranopterin molybdoenzyme OAT reactivity. Computational studies of these molecules indicate that the delocalized positive charge lowers the lowest unoccupied molecular orbital (LUMO) energy of cationic [Tpm*MoO2Cl]+ relative to Tp*MoO2Cl. Despite their virtually identical geometric structures revealed by crystal structures, the MoVI/MoV redox potential of 2 is increased by 350 mV relative to that of Tp*MoVIO2Cl. This LUMO stabilization also contributes to an increased effective electrophilicity of [Tpm*MoO2Cl]+ relative to that of Tp*MoO2Cl, resulting in a more favorable resonant interaction between the molydenum complex LUMO and the highest occupied molecular orbital (HOMO) of the PPh3 substrate. This leads to a greater thermodynamic driving force, an earlier transition state, and a lowered activation barrier for the orbitally controlled first step of the OAT reaction in the Tpm* system relative to the Tp* system. An Eyring plot analysis shows that this initial step yields an O≡MoIV-OPPh3 intermediate via an associative transition state, and the reaction is ∼500-fold faster for 2 than for Tp*MoO2Cl. The second step of the OAT reaction entails solvolysis of the O≡MoIV-OPPh3 intermediate to afford the solvent-substituted MoIV product and is 750-fold faster for the Tpm* system at -15 °C compared to the Tp* system. The observed rate enhancement for the second step is ascribed to a switch of the reaction mechanism from a dissociative pathway for the Tp* system to an alternative associative pathway for the Tpm* system. This is due to a more Lewis acidic MoIV center in the Tpm* system.
Collapse
Affiliation(s)
- Jaya Paudel
- Department of Chemistry and Biochemistry , New Mexico State University , Las Cruces , New Mexico 88003 , United States
| | - Amrit Pokhrel
- Department of Chemistry and Chemical Biology , The University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Martin L Kirk
- Department of Chemistry and Chemical Biology , The University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Feifei Li
- Department of Chemistry and Biochemistry , New Mexico State University , Las Cruces , New Mexico 88003 , United States
| |
Collapse
|
4
|
Wang SY, Dong X, Zhou ZH. N-hetercycle dimeric molybdenum(V) complexes with strong interactions and their catalytic degradations of methyl orange. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.03.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Acid-facilitated product release from a Mo(IV) center: relevance to oxygen atom transfer reactivity of molybdenum oxotransferases. J Biol Inorg Chem 2017; 23:193-207. [PMID: 29177705 DOI: 10.1007/s00775-017-1518-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/10/2017] [Indexed: 01/27/2023]
Abstract
We report that pyridinium ions (HPyr+) accelerate the conversion of [Tp*MoIVOCl(OPMe3)] (1) to [Tp*MoIVOCl(NCCH3)] (2) by 103-fold, affording 2 in near-quantitative yield; Tp* = hydrotris(3,5-dimethyl-1-pyrazolyl)borate. This novel reactivity and the mechanism of this reaction were investigated in detail. The formation of 2 followed pseudo-first-order kinetics, with the observed pseudo-first-order rate constant (k obs) linearly correlated with [HPyr+]. An Eyring plot revealed that this HPyr+-facilitated reaction has a small positive value of ∆S ‡ indicative of a dissociative interchange (Id) mechanism, different from the slower associative interchange (Ia) mechanism in the absence of HPyr+ marked with a negative ∆S ‡. Interestingly, log(k obs) was found to be linearly correlated to the acidity of substituted pyridinium ions. This novel reactivity is further investigated using combined DFT and ab initio coupled cluster methods. Different reaction pathways, including Id, Ia, and possible alternative routes in the absence or presence of HPyr+, were considered, and enthalpy and free energies were calculated for each pathway. Our computational results further underscored that the Id route is energetically favored in the presence of HPyr+, in contrast with the preferred Ia-NNO pathway in the absence of HPyr+. Our computational results also revealed molecular-level details for the HPyr+-facilitated Id route. Specifically, HPyr+ initially becomes hydrogen-bonded to the oxygen atom of the Mo(IV)-OPMe3 moiety, which lowers the activation barrier for the Mo-OPMe3 bond cleavage in a rate-limiting step to dissociate the OPMe3 product. The implications of our results were discussed in the context of molybdoenzymes, particularly the reductive half-reaction of sulfite oxidase.
Collapse
|
6
|
Affiliation(s)
- Charles G. Young
- Department of Chemistry and PhysicsLa Trobe Institute for Molecular ScienceLa Trobe University3086MelbourneVictoriaAustralia
| |
Collapse
|
7
|
Yang J, Mogesa B, Basu P, Kirk ML. Large Ligand Folding Distortion in an Oxomolybdenum Donor-Acceptor Complex. Inorg Chem 2015; 55:785-93. [PMID: 26692422 DOI: 10.1021/acs.inorgchem.5b02252] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interligand charge transfer is examined in the novel metallo-dithiolene complex MoO(SPh)2((i)Pr2Dt(0)) (where (i)Pr2Dt(0) = N,N'-isopropyl-piperazine-2,3-dithione). The title complex displays a remarkable 70° "envelope"-type fold of the five-membered dithiolene ring, which is bent upward toward the terminal oxo ligand. A combination of electronic absorption and resonance Raman spectroscopies have been used to probe the basic electronic structure responsible for the large fold-angle distortion. The intense charge transfer transition observed at ∼18 000 cm(-1) is assigned as a thiolate → dithione ligand-to-ligand charge transfer (LL'CT) transition that also possesses Mo(IV) → dithione charge transfer character. Strong orbital mixing between occupied and virtual orbitals with Mo(x(2)-y(2)) orbital character is derived from a strong pseudo Jahn-Teller effect, which drives the large fold-angle distortion to yield a double-well potential in the electronic ground state.
Collapse
Affiliation(s)
- Jing Yang
- Department of Chemistry and Chemical Biology, The University of New Mexico , MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Benjamin Mogesa
- Department of Chemistry and Biochemistry, Duquesne University , Pittsburgh, Pennsylvania 15282, United States
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University , Pittsburgh, Pennsylvania 15282, United States
| | - Martin L Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico , MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| |
Collapse
|
8
|
Pimkov IV, Serli-Mitasev B, Peterson AA, Ratvasky SC, Hammann B, Basu P. Designing the Molybdopterin Core through Regioselective Coupling of Building Blocks. Chemistry 2015; 21:17057-72. [DOI: 10.1002/chem.201502845] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Indexed: 01/08/2023]
|
9
|
Majumdar A. Structural and functional models in molybdenum and tungsten bioinorganic chemistry: description of selected model complexes, present scenario and possible future scopes. Dalton Trans 2015; 43:8990-9003. [PMID: 24798698 DOI: 10.1039/c4dt00631c] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A brief description about some selected model complexes in molybdenum and tungsten bioinorganic chemistry is provided. The synthetic strategies involved and their limitations are discussed. Current status of molybdenum and tungsten bioinorganic modeling chemistry is presented briefly and synthetic problems associated therein are analyzed. Possible future directions which may expand the scope of modeling chemistry are suggested.
Collapse
Affiliation(s)
- Amit Majumdar
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
10
|
Pastor A, Montilla F, Galindo A. Oxido- versus imido-transfer reactions in oxido–imido molybdenum(VI) complexes: A combined experimental and theoretical study. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Sparacino-Watkins C, Stolz JF, Basu P. Nitrate and periplasmic nitrate reductases. Chem Soc Rev 2014; 43:676-706. [PMID: 24141308 DOI: 10.1039/c3cs60249d] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types--periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed.
Collapse
|
12
|
Pimkov IV, Nigam A, Venna K, Fleming FF, Solntsev PV, Nemykin VN, Basu P. Dithiolopyranthione Synthesis, Spectroscopy and an Unusual Reactivity with DDQ. J Heterocycl Chem 2013; 50:879-886. [PMID: 25328243 PMCID: PMC4200397 DOI: 10.1002/jhet.1715] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The bicyclic pyran thiolone tetrahydro-3αH-[1,3]dithiolo[4,5-β]pyran-2-thione (3a) engages in a highly unusual fragmentation in the presence of DDQ. The pyran thiolone, 3a, was synthesized by chlorination of 3,4-dihydro-2H-pyran (1), followed by condensing with CS2 and NaSH. Reaction of 3a with DDQ generates the isomerized pyran thiolone tetrahydro-3αH-[1,3]dithiolo[4,5-β]pyran-2-thione (3b) and 4-benzyl-5-(3-hydroxypropyl)-1,3-dithiole-2-thione (4) via a deep-seated rearrangement. The identity of 3b was confirmed by single crystal X-ray analysis: P21/c, a=5.807(9) Å, b = 12.99(2) Å, c = 11.445(15), β=113.23(6)°. Mechanistic experiments and computational insight is used to explain the likely sequence of events in the highly unusual formation of 4. Collectively, these results establish fundamental reactivity patterns for further research in this area.
Collapse
Affiliation(s)
- Igor V. Pimkov
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282
| | - Archana Nigam
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282
| | - Kiran Venna
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282
| | - Fraser F. Fleming
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282
| | - Pavlo V. Solntsev
- Department of Chemistry, The University of Minnesota-Duluth, Duluth, MN 55812
| | - Victor N. Nemykin
- Department of Chemistry, The University of Minnesota-Duluth, Duluth, MN 55812
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282
| |
Collapse
|
13
|
Mitra J, Sarkar S. Oxo-Mo(IV)(dithiolene)thiolato complexes: analogue of reduced sulfite oxidase. Inorg Chem 2013; 52:3032-42. [PMID: 23461669 DOI: 10.1021/ic302485c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A series of [Mo(IV)O(mnt)(SR)(N-N)](-) (mnt = maleonitriledithiolate; R = Ph, nap, p-Cl-Ph, p-CO2H-Ph, and p-NO2-Ph; N-N = 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen)) complexes analogous to the reduced active site of enzymes of the sulfite oxidase family has been synthesized and their participation in electron transfer reactions studied. Equatorial thiolate and dithiolene ligations have been used to closely simulate the three sulfur coordinations present in the native molybdenum active site. These synthetic analogues have been shown to participate in electron transfer via a pentavalent EPR-active Mo(V) intermediate with minimal structural change as observed electrochemically by reversible oxidative responses. The role of the redox-active dithiolene ligand as an electron transfer gate between external oxidants and the molybdenum center could be envisaged in one of the analogue systems where the initial transient EPR signal with <g> = 2.008 is replaced by the appearance of a typical Mo(V)-centered EPR (<g> = 1.976) signal. The appearance of such a ligand-based transient radical at the initial stage has been supported by the ligand-centered frontier orbital from DFT calculation. A stepwise rationale has been provided by computational study to show that the coupled effects of the diimine bite angle and the thiolato dihedral angle determine the metal- or ligand-based frontier orbital occupancy. DFT calculation has further supported the similarity between the reduced, semireduced, and oxidized resting state of the molybdenum center in Moco of SO with the synthesized complexes and their corresponding one-electron and fully oxidized species.
Collapse
Affiliation(s)
- Joyee Mitra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | | |
Collapse
|
14
|
Mitra J, Sarkar S. Modelling the reduced xanthine oxidase in active sulfo and inactive desulfo forms. Dalton Trans 2013; 42:3050-8. [DOI: 10.1039/c2dt32309e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Basu P, Kail BW, Adams AK, Nemykin VN. Quantitation of the ligand effect in oxo-transfer reactions of dioxo-Mo(VI) trispyrazolyl borate complexes. Dalton Trans 2012; 42:3071-81. [PMID: 23212540 DOI: 10.1039/c2dt32349d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxygen atom transfer reactivity (OAT) of dioxo-Mo(VI) complexes of hydrotrispyrazolyl borate (hydrotris(3,5-dimethylpyrazolyl)borate, Tp(Me2); hydrotris(3-isopropylpyrazol-1-yl)borate, Tp(iPr)) with tertiary phosphines (PMe(3), PMe(2)Ph, PEt(3), PEt(2)Ph, PBu(n)(3), PMePh(2), or PEtPh(2)) has been investigated. In acetonitrile, these reactions proceed via the formation of a phosphoryl intermediate complex that undergoes a solvolysis reaction. We report the synthesis and characterization of several phosphoryl complexes. The rates of formation of phosphoryl complexes and their solvation were determined by spectrophotometry. The rates of the reactions and the properties of the phosphoryl species were investigated using the Quantitative Analysis of Ligand Effect (QALE) methodology. The results show that, at least in this system, the first step of the reaction is controlled primarily by the steric factor, and in the second step, both electronic and steric factors are important. We also analyzed the effect of ligands on the reaction rate i.e., Tp(Me2)vs. Tp(iPr).
Collapse
Affiliation(s)
- Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15228, USA.
| | | | | | | |
Collapse
|
16
|
Marom H, Antonov S, Popowski Y, Gozin M. Selective Sulfoxidation of Thioethers and Thioaryl Boranes with Nitrate, Promoted by a Molybdenum–Copper Catalytic System. J Org Chem 2011; 76:5240-6. [DOI: 10.1021/jo2001808] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hanit Marom
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Svetlana Antonov
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yanay Popowski
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Gozin
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
17
|
Mayilmurugan R, Harum BN, Volpe M, Sax AF, Palaniandavar M, Mösch‐Zanetti NC. Mechanistic Insight into the Reactivity of Oxotransferases by Novel Asymmetric Dioxomolybdenum(VI) Model Complexes. Chemistry 2010; 17:704-13. [DOI: 10.1002/chem.201001177] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 08/27/2010] [Indexed: 11/06/2022]
Affiliation(s)
- Ramasamy Mayilmurugan
- Institut für Chemie, Bereich Anorganische Chemie, Karl‐Franzens‐Universität Graz, Schubertstrasse 1, 8010, Graz (Austria), Fax: (+43) 316‐380‐9835
| | - Bastian N. Harum
- Institut für Chemie, Bereich Anorganische Chemie, Karl‐Franzens‐Universität Graz, Schubertstrasse 1, 8010, Graz (Austria), Fax: (+43) 316‐380‐9835
| | - Manuel Volpe
- Institut für Chemie, Bereich Anorganische Chemie, Karl‐Franzens‐Universität Graz, Schubertstrasse 1, 8010, Graz (Austria), Fax: (+43) 316‐380‐9835
| | - Alexander F. Sax
- Institut für Chemie, Bereich Physikalische und Theoretische Chemie, Karl‐Franzens‐Universität Graz, Heinrichstrasse 28/VI, 8010, Graz (Austria)
| | | | - Nadia C. Mösch‐Zanetti
- Institut für Chemie, Bereich Anorganische Chemie, Karl‐Franzens‐Universität Graz, Schubertstrasse 1, 8010, Graz (Austria), Fax: (+43) 316‐380‐9835
| |
Collapse
|
18
|
Ng VWL, Taylor MK, Hill LMR, White JM, Young CG. Novel
O
,
O′
‐Donor Oxo‐Mo
IV
Hydrotris(3‐isopropylpyrazolyl)borate Complexes Formed by Chelation of Potentially Hydrogen‐Bonding Phenolate Ligands on Reduction of Dioxo‐Mo
VI
Complexes. Eur J Inorg Chem 2010. [DOI: 10.1002/ejic.201000214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Victor W. L. Ng
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia, Fax: +613‐349‐5180
| | - Michelle K. Taylor
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia, Fax: +613‐349‐5180
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia, Fax: +613‐349‐5180
| | - Lyndal M. R. Hill
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia, Fax: +613‐349‐5180
| | - Jonathan M. White
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia, Fax: +613‐349‐5180
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia, Fax: +613‐349‐5180
| | - Charles G. Young
- School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia, Fax: +613‐349‐5180
| |
Collapse
|
19
|
Basu P, Kail BW, Young CG. Influence of the oxygen atom acceptor on the reaction coordinate and mechanism of oxygen atom transfer from the dioxo-Mo(VI) complex, Tp(iPr)MoO(2)(OPh), to tertiary phosphines. Inorg Chem 2010; 49:4895-900. [PMID: 20433155 PMCID: PMC2897133 DOI: 10.1021/ic902500h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The oxygen atom transfer reactivity of the dioxo-Mo(VI) complex, Tp(iPr)MoO(2)(OPh) (Tp(iPr) = hydrotris(3-isopropylpyrazol-1-yl)borate), with a range of tertiary phosphines (PMe(3), PMe(2)Ph, PEt(3), PBu(n)(3), PEt(2)Ph, PEtPh(2), and PMePh(2)) has been investigated. The first step in all the reactions follows a second-order rate law indicative of an associative transition state, consistent with nucleophilic attack by the phosphine on an oxo ligand, namely, Tp(iPr)MoO(2)(OPh) + PR(3) --> Tp(iPr)MoO(OPh)(OPR(3)). The calculated free energy of activation for the formation of the OPMe(3) intermediate (Chem. Eur. J. 2006, 12, 7501) is in excellent agreement with the experimental DeltaG() value reported here. The second step of the reaction, that is, the exchange of the coordinated phosphine oxide by acetonitrile, Tp(iPr)MoO(OPh)(OPR(3)) + MeCN --> Tp(iPr)MoO(OPh)(MeCN) + OPR(3), is first-order in starting complex in acetonitrile. The reaction occurs via a dissociative interchange (I(d)) or associative interchange (I(a)) mechanism, depending on the nature of the phosphine oxide. The activation parameters for the solvolysis of Tp(iPr)MoO(OPh)(OPMe(3)) (DeltaH(++) = 56.3 kJ mol(-1); DeltaS(++) = -125.9 J mol(-1) K(-1); DeltaG(++) = 93.8 kJ mol(-1)) and Tp(iPr)MoO(OPh)(OPEtPh(2)) (DeltaH(++) = 66.5 kJ mol(-1); DeltaS(++) = -67.6 J mol(-1) K(-1); DeltaG(++) = 86.7 kJ mol(-1)) by acetonitrile are indicative of I(a) mechanisms. In contrast, the corresponding parameters for the solvolysis reaction of Tp(iPr)MoO(OPh)(OPEt(3)) (DeltaH(++) = 95.8 kJ mol(-1); DeltaS(++) = 26.0 J mol(-1) K(-1); DeltaG(++) = 88.1 kJ mol(-1)) and the remaining complexes by the same solvent are indicative of an I(d) mechanism. The equilibrium constant for the solvolysis of the oxo-Mo(V) phosphoryl complex, [Tp(iPr)MoO(OPh)(OPMe(3))](+), by acetonitrile was calculated to be 1.9 x 10(-6). The oxo-Mo(V) phosphoryl complex is more stable than the acetonitrile analogue, whereas the oxo-Mo(IV) acetonitrile complex is more stable than the phosphoryl analogue. The higher stability of the Mo(V) phosphoryl complex may explain the phosphate inhibition of sulfite oxidase.
Collapse
Affiliation(s)
- Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA.
| | | | | |
Collapse
|
20
|
Basu P, Nemykin VN, Sengar RS. Substituent Effect on Oxygen Atom Transfer Reactivity from Oxomolybdenum Centers: Synthesis, Structure, Electrochemistry, and Mechanism. Inorg Chem 2009; 48:6303-13. [DOI: 10.1021/ic900579s] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - Victor N. Nemykin
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - Raghvendra S. Sengar
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282
| |
Collapse
|
21
|
Lyashenko G, Saischek G, Judmaier ME, Volpe M, Baumgartner J, Belaj F, Jancik V, Herbst-Irmer R, Mösch-Zanetti NC. Oxo-molybdenum and oxo-tungsten complexes of Schiff bases relevant to molybdoenzymes. Dalton Trans 2009:5655-65. [DOI: 10.1039/b820629e] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|