1
|
Park M, Schmidt C, Türck S, Hanusch F, Hirmer SV, Ott I, Casini A, Inoue S. Potent Anticancer Activity of a Dinuclear Gold(I) bis-N-Heterocyclic Imine Complex Related to Thioredoxin Reductase Inhibition in Vitro. Chempluschem 2024; 89:e202300557. [PMID: 37937471 DOI: 10.1002/cplu.202300557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
A dinuclear gold(I) complex featuring a strongly donating bis-N-heterocyclic imine ligand was synthesised and characterised by different methods, including single crystal X-ray diffraction (SC-XRD) analysis. The compound has been tested for its antiproliferative effects in a panel of human cancer cell lines in vitro, showing highly selective anticancer effects, particularly against human A549 non-small cell lung cancer cells (NSCLC), with respect to non-tumorigenic cells (VERO). The accumulation of the compound in A549 and VERO cells was studied by high-resolution continuum source atomic absorption spectrometry (HRCS-AAS), revealing that the anticancer effects are not particularly related to the different amounts of gold taken up by the cells over 72 h. Enzyme inhibition studies to evaluate the activity of the seleno-enzyme thioredoxin reductase (TrxR) in cancer cell extracts show that the gold(I) compound is a potent inhibitor (IC50=0.567±0.208 μM), while the free ligand is ineffective. This result correlates with the observed compound's selectivity towards A549 cells overexpressing the enzyme.
Collapse
Affiliation(s)
- Mihyun Park
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Claudia Schmidt
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Sebastian Türck
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstr. 55, 38106, Braunschweig, Germany
| | - Franziska Hanusch
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Simone V Hirmer
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstr. 55, 38106, Braunschweig, Germany
| | - Angela Casini
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Shigeyoshi Inoue
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching b. München, Germany
| |
Collapse
|
2
|
Moreno-Alcántar G, Picchetti P, Casini A. Gold Complexes in Anticancer Therapy: From New Design Principles to Particle-Based Delivery Systems. Angew Chem Int Ed Engl 2023; 62:e202218000. [PMID: 36847211 DOI: 10.1002/anie.202218000] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 02/28/2023]
Abstract
The discovery of the medicinal properties of gold complexes has fuelled the design and synthesis of new anticancer metallodrugs, which have received special attention due to their unique modes of action. Current research in the development of gold compounds with therapeutic properties is predominantly focused on the molecular design of drug leads with superior pharmacological activities, e.g., by introducing targeting features. Moreover, intensive research aims at improving the physicochemical properties of gold compounds, such as chemical stability and solubility in the physiological environment. In this regard, the encapsulation of gold compounds in nanocarriers or their chemical grafting onto targeted delivery vectors could lead to new nanomedicines that eventually reach clinical applications. Herein, we provide an overview of the state-of-the-art progress of gold anticancer compounds, andmore importantly we thoroughly revise the development of nanoparticle-based delivery systems for gold chemotherapeutics.
Collapse
Affiliation(s)
- Guillermo Moreno-Alcántar
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Pierre Picchetti
- Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching b. München, Germany
| |
Collapse
|
3
|
Chakraborty P, Oosterhuis D, Bonsignore R, Casini A, Olinga P, Scheffers D. An Organogold Compound as Potential Antimicrobial Agent against Drug-Resistant Bacteria: Initial Mechanistic Insights. ChemMedChem 2021; 16:3060-3070. [PMID: 34181818 PMCID: PMC8518660 DOI: 10.1002/cmdc.202100342] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 01/07/2023]
Abstract
The rise of antimicrobial resistance has necessitated novel strategies to efficiently combat pathogenic bacteria. Metal-based compounds have been proven as a possible alternative to classical organic drugs. Here, we have assessed the antibacterial activity of seven gold complexes of different families. One compound, a cyclometalated Au(III) C^N complex, showed activity against Gram-positive bacteria, including multi-drug resistant clinical strains. The mechanism of action of this compound was studied in Bacillus subtilis. Overall, the studies point towards a complex mode of antibacterial action, which does not include induction of oxidative stress or cell membrane damage. A number of genes related to metal transport and homeostasis were upregulated upon short treatment of the cells with gold compound. Toxicity tests conducted on precision-cut mouse tissue slices ex vivo revealed that the organogold compound is poorly toxic to mouse liver and kidney tissues, and may thus, be treated as an antibacterial drug candidate.
Collapse
Affiliation(s)
- Parichita Chakraborty
- Department of Molecular MicrobiologyGroningen Institute for Biomolecular Sciences and BiotechnologyUniversity of Groningen9747 AGGroningenThe Netherlands
| | - Dorenda Oosterhuis
- Department of Pharmaceutical Technology and BiopharmacyGroningen Research Institute of PharmacyUniversity of Groningen9713AVGroningenThe Netherlands
| | - Riccardo Bonsignore
- Chair of Medicinal and Bioinorganic ChemistryDepartment of ChemistryTechnical University of MunichLichtenbergstr. 485748Garching b. MünchenGermany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic ChemistryDepartment of ChemistryTechnical University of MunichLichtenbergstr. 485748Garching b. MünchenGermany
| | - Peter Olinga
- Department of Pharmaceutical Technology and BiopharmacyGroningen Research Institute of PharmacyUniversity of Groningen9713AVGroningenThe Netherlands
| | - Dirk‐Jan Scheffers
- Department of Molecular MicrobiologyGroningen Institute for Biomolecular Sciences and BiotechnologyUniversity of Groningen9747 AGGroningenThe Netherlands
| |
Collapse
|
4
|
Pimpão C, Wragg D, Bonsignore R, Aikman B, Pedersen PA, Leoni S, Soveral G, Casini A. Mechanisms of irreversible aquaporin-10 inhibition by organogold compounds studied by combined biophysical methods and atomistic simulations. Metallomics 2021; 13:6360981. [PMID: 34468767 DOI: 10.1093/mtomcs/mfab053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/18/2021] [Indexed: 11/14/2022]
Abstract
The inhibition of glycerol permeation via human aquaporin-10 (hAQP10) by organometallic gold complexes has been studied by stopped-flow fluorescence spectroscopy, and its mechanism has been described using molecular modelling and atomistic simulations. The most effective hAQP10 inhibitors are cyclometalated Au(III) C^N compounds known to efficiently react with cysteine residues leading to the formation of irreversible C-S bonds. Functional assays also demonstrate the irreversibility of the binding to hAQP10 by the organometallic complexes. The obtained computational results by metadynamics show that the local arylation of Cys209 in hAQP10 by one of the gold inhibitors is mapped into a global change of the overall free energy of glycerol translocation across the channel. Our study further pinpoints the need to understand the mechanism of glycerol and small molecule permeation as a combination of local structural motifs and global pore conformational changes, which are taking place on the scale of the translocation process and whose study, therefore, require sophisticated molecular dynamics strategies.
Collapse
Affiliation(s)
- Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Darren Wragg
- Department of Chemistry, Technical University of Munich, 85747 Garching bei München, Germany
| | - Riccardo Bonsignore
- Department of Chemistry, Technical University of Munich, 85747 Garching bei München, Germany
| | - Brech Aikman
- Department of Chemistry, Technical University of Munich, 85747 Garching bei München, Germany
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Per Amstrup Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen OE, Denmark
| | - Stefano Leoni
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Angela Casini
- Department of Chemistry, Technical University of Munich, 85747 Garching bei München, Germany
| |
Collapse
|
5
|
Mirzadeh N, Telukutla SR, Luwor R, Privér S, Velma GR, Jakku RK, Andrew N S, Plebanski M, Christian H, Bhargava S. Dinuclear orthometallated gold(I)-gold(III) anticancer complexes with potent in vivo activity through an ROS-dependent mechanism. Metallomics 2021; 13:6308826. [PMID: 34165566 DOI: 10.1093/mtomcs/mfab039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 01/11/2023]
Abstract
Increasingly explored over the last decade, gold complexes have shown great promise in the field of cancer therapeutics. A major obstacle to their clinical progression has been their lack of in vivo stability, particularly for gold(III) complexes, which often undergo a facile reduction in the presence of biomolecules such as glutathione. Herein, we report a new class of promising anticancer gold(I)-gold(III) complexes with the general formula [XAuI(μ-2-C6F4PPh2)(κ2-2-C6F4PPh2)AuIIIX] [X = Cl (1), Br (2), NO3 (3)] which feature two gold atoms in different oxidation states (I and III) in a single molecule. Interestingly, gold(I)-gold(III) complexes (1-3) are stable against glutathione reduction under physiological-like conditions. In addition, complexes 1-3 exhibit significant cytotoxicity (276-fold greater than cisplatin) toward the tested cancer cells compared to the noncancerous cells. Moreover, the gold(I)-gold(III) complexes do not interact with DNA-like cisplatin but target cellular thioredoxin reductase, an enzyme linked to the development of cisplatin drug resistance. Complexes 1-3 also showed potential to inhibit cancer and endothelial cell migration, as well as tube formation during angiogenesis. In vivo studies in a murine HeLa xenograft model further showed the gold compounds may inhibit tumor growth on par clinically used cisplatin, supporting the significant potential this new compound class has for further development as cancer therapeutic.
Collapse
Affiliation(s)
- Nedaossadat Mirzadeh
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Srinivasa Reddy Telukutla
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Rodney Luwor
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Steven Privér
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Ganga Reddy Velma
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Ranjith Kumar Jakku
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| | - Stephens Andrew N
- Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
| | | | - Hartinger Christian
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Suresh Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
6
|
Corinti D, Paciotti R, Re N, Coletti C, Chiavarino B, Crestoni ME, Fornarini S. Binding motifs of cisplatin interaction with simple biomolecules and aminoacid targets probed by IR ion spectroscopy. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2019-0110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
The primary intermediates resulting from the interaction of cisplatin, cis-(PtCl2(NH3)2], most widespread antitumor drug, with biomolecular targets are characterized. Electrospray ionization is used to deliver ions formed in solution into the gas phase where they are structurally interrogated by vibrational “action” spectroscopy in conjunction with quantum chemical calculations. The aquation products, cis-[PtX(NH3)2(H2O)]+ (X = Cl, OH), lying along the path responsible for biological activity, are shown to display distinctive features responding to ligation pattern and optimized geometry. The IR spectra of trans-[PtX(NH3)2(H2O)]+ are different, testifying that cis and trans complexes are stable, non interconverting species both in solution and in the gas phase. Ligand substitution by simple nucleophiles (L = pyridine, 4(5)-methylimidazole, thioanisole, trimethylphosphate, acetamide, dimethylacetamide, urea and thiourea) yields cis-[PtCl(NH3)2(L)]+ complexes displaying remarkable regioselectivity whenever L presents multiple candidate platination sites. The incipient formation of cisplatin-derived complexes with the recognized biological amino acid targets L-histidine (His) and L-methionine (Met) has been investigated revealing the primary platination event to be mainly directed at the Nπ atom of the imidazole side chain of His and to the thiomethyl sulfur of Met. The isomer and conformer population of the ensuing cis-[PtCl(NH3)2(Met/His)]+ complexes, sampled in the gas phase, can be ascertained by photofragmentation kinetics on isomer/conformer specific resonances.
Collapse
Affiliation(s)
- Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco , Università degli Studi di Roma La Sapienza , P.le A. Moro 5 , Roma I-00185 , Italy
| | - Roberto Paciotti
- Dipartimento di Farmacia , Università G. D’Annunzio Chieti-Pescara , Via dei Vestini 31 , Chieti I-66100 , Italy
| | - Nazzareno Re
- Dipartimento di Farmacia , Università G. D’Annunzio Chieti-Pescara , Via dei Vestini 31 , Chieti I-66100 , Italy
| | - Cecilia Coletti
- Dipartimento di Farmacia , Università G. D’Annunzio Chieti-Pescara , Via dei Vestini 31 , Chieti I-66100 , Italy
| | - Barbara Chiavarino
- Dipartimento di Chimica e Tecnologie del Farmaco , Università degli Studi di Roma La Sapienza , P.le A. Moro 5 , Roma I-00185 , Italy
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco , Università degli Studi di Roma La Sapienza , P.le A. Moro 5 , Roma I-00185 , Italy
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco , Università degli Studi di Roma La Sapienza , P.le A. Moro 5 , Roma I-00185 , Italy
| |
Collapse
|
7
|
Cziferszky M, Gust R. Zeise's salt as powerful platinating agent for proteins investigated by top-down-mass spectrometry. J Inorg Biochem 2018; 189:53-57. [PMID: 30218890 DOI: 10.1016/j.jinorgbio.2018.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 11/16/2022]
Abstract
Metallodrugs have become an integral part of modern medicinal chemistry with platinum drugs as anti-cancer agents being well-known examples. The historically interesting compound Zeise's salt, potassium trichlorido(ethene)platinate(II) has scarcely been investigated in this context yet. This study is geared towards shedding light on the biological reactivity of this platinum complex. Mass Spectrometry tools were used to obtain a deeper understanding of its interactions with biomolecules on the molecular level. Angiotensin I and Ubiquitin were chosen as model systems. Comparison to Cisplatin show that Zeise's salt is more reactive towards nucleophilic sites in proteins. Our data indicate that the ethylene ligand remains on the platinum when coordinated to a nitrogen donor in the biomolecule and therefore offers a linkage for the introduction of further functionality. When attached to sulfur donors in the biomolecule, platinum(II) provides a site for the formation of crosslinks and loops in the biomolecules by losing all four of its initial ligands.
Collapse
Affiliation(s)
- Monika Cziferszky
- University of Innsbruck, Department of Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Center for Molecular Biosciences Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Ronald Gust
- University of Innsbruck, Department of Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Center for Molecular Biosciences Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria.
| |
Collapse
|
8
|
Messori L, Merlino A. Protein metalation by metal-based drugs: X-ray crystallography and mass spectrometry studies. Chem Commun (Camb) 2018; 53:11622-11633. [PMID: 29019481 DOI: 10.1039/c7cc06442j] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The combined use of X-ray crystallography and mass spectrometry represents a valuable strategy to investigate and characterize protein metalation induced by anticancer metal-based drugs. Here, we summarize a series of significant results recently obtained in our laboratories upon the examination of the structures of several adducts of proteins with representative metallodrugs (mostly containing ruthenium, gold and platinum). The general mechanisms of protein metalation that emerge from a careful comparative analysis of these structures are illustrated and their mechanistic implications are discussed. Possible directions for future work in the field are delineated.
Collapse
Affiliation(s)
- L Messori
- Department of Chemistry, University of Florence, Italy.
| | | |
Collapse
|
9
|
van Rixel VHS, Moolenaar GF, Siegler MA, Messori L, Bonnet S. Controlling with light the interaction between trans-tetrapyridyl ruthenium complexes and an oligonucleotide. Dalton Trans 2018; 47:507-516. [PMID: 29230469 DOI: 10.1039/c7dt03613b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Three new trans-ruthenium(ii) complexes coordinated to tetrapyridyl ligands, namely [Ru(bapbpy)(dmso)Cl]Cl ([2]Cl), [Ru(bapbpy)(Hmte)2](PF6)2 ([3](PF6)2), and [Ru(biqbpy)(Hmte)2](PF6)2 ([4](PF6)2), were prepared as analogues of [Ru(biqbpy)(dmso)Cl]Cl ([1]Cl), a recently described photoactivated chemotherapy agent. The new complexes were characterized, and their crystal structures showed the distorted coordination octahedron typical of this family of complexes. Their photoreactivity in solution was analyzed by spectrophotometry and mass spectrometry, which showed that the sulfur ligand was substituted upon blue light irradiation. The binding of the ruthenium complexes to a reference single-stranded oligonucleotide (s(5'CTACGGTTTCAC3')) was explored both in the dark and under light irradiation by gel electrophoresis and high-resolution mass spectrometry. While adduct formation in the dark was negligible for the four complexes, light irradiation led to the formation of adducts with one or two ruthenium centers per oligonucleotide. The absence of interactions in the dark and the presence of complex-oligonucleotide adducts demonstrate that visible light controls the interaction of these ruthenium complexes with nucleic acids.
Collapse
Affiliation(s)
- Vincent H S van Rixel
- Leiden University, Leiden Institute of Chemistry, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
10
|
Porchia M, Pellei M, Marinelli M, Tisato F, Del Bello F, Santini C. New insights in Au-NHCs complexes as anticancer agents. Eur J Med Chem 2018; 146:709-746. [PMID: 29407992 DOI: 10.1016/j.ejmech.2018.01.065] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 01/03/2023]
Abstract
Within the research field of antitumor metal-based agents alternative to platinum drugs, gold(I/III) coordination complexes have always been in the forefront due mainly to the familiarity of medicinal chemists with gold compounds, whose application in medicine goes back in the ancient times, and to the rich chemistry shown by this metal. In the last decade, N-heterocyclic carbene ligands (NHC), a class of ligands that largely resembles the chemical properties of phosphines, became of interest for gold(I) medicinal applications, and since then, the research on NHC-gold(I/III) coordination complexes as potential antiproliferative agents boosted dramatically. Different classes of gold(I/III)-NHC complexes often showed an outstanding in vitro antiproliferative activity, however up to now very few in vivo data have been reported to corroborate the in vitro results. This review summarizes all achievements in the field of gold (I/III) complexes comprising NHC ligands proposed as potential antiproliferative agents in the period 2004-2016, and critically analyses biological data (mainly IC50 values) in relation to the chemical structures of Au compounds. The state of art of the in vivo studies so far described is also reported.
Collapse
Affiliation(s)
| | - Maura Pellei
- School of Science and Technology, Chemistry Division, University of Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy.
| | - Marika Marinelli
- School of Science and Technology, Chemistry Division, University of Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy
| | | | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Macerata, Italy
| | - Carlo Santini
- School of Science and Technology, Chemistry Division, University of Camerino, via S. Agostino 1, 62032 Camerino, Macerata, Italy
| |
Collapse
|
11
|
Mass spectrometry as a powerful tool to study therapeutic metallodrugs speciation mechanisms: Current frontiers and perspectives. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.02.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Biancalana L, Pratesi A, Chiellini F, Zacchini S, Funaioli T, Gabbiani C, Marchetti F. Ruthenium arene complexes with triphenylphosphane ligands: cytotoxicity towards pancreatic cancer cells, interaction with model proteins, and effect of ethacrynic acid substitution. NEW J CHEM 2017. [DOI: 10.1039/c7nj02300f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The anticancer behaviour of Ru arene complexes can be tuned by an appropriate choice of the site and linkage of the bioactive group to the phosphane ligand.
Collapse
Affiliation(s)
- Lorenzo Biancalana
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| | - Alessandro Pratesi
- MetMed
- Dipartimento di Chimica “Ugo Schiff”
- Università di Firenze
- I-50019 Sesto Fiorentino
- Italy
| | - Federica Chiellini
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale “Toso Montanari”
- Università di Bologna
- I-40136 Bologna
- Italy
| | - Tiziana Funaioli
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| | - Chiara Gabbiani
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| | - Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| |
Collapse
|
13
|
Russo Krauss I, Ferraro G, Merlino A. Cisplatin-Protein Interactions: Unexpected Drug Binding to N-Terminal Amine and Lysine Side Chains. Inorg Chem 2016; 55:7814-6. [PMID: 27482735 DOI: 10.1021/acs.inorgchem.6b01234] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Literature studies carried out by mass spectrometry and X-ray crystallography have demonstrated that cisplatin is able to bind proteins mainly close to Met, His, and free Cys side chains. To identify possible alternative modes of cisplatin binding to proteins at the molecular level, here we have solved the high-resolution X-ray structure of the adduct formed in the reaction between the drug and the model protein thaumatin, which does not contain any His and free Cys residues and possesses just one buried Met. Our data reveal unexpected cisplatin binding sites on the protein surface that could have general significance: cisplatin fragments -[Pt(NH3)2Cl](+), -[Pt(NH3)Cl2], and -[Pt(NH3)2(OH2)](2+) bind to a protein N-terminus and close to Lys and Glu side chains.
Collapse
Affiliation(s)
- Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II , Via Cintia, I-80126 Naples, Italy
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II , Via Cintia, I-80126 Naples, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II , Via Cintia, I-80126 Naples, Italy
| |
Collapse
|
14
|
Nišavić M, Masnikosa R, Butorac A, Perica K, Rilak A, Korićanac L, Hozić A, Petković M, Cindrić M. Elucidation of the binding sites of two novel Ru(II) complexes on bovine serum albumin. J Inorg Biochem 2016; 159:89-95. [DOI: 10.1016/j.jinorgbio.2016.02.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/25/2016] [Accepted: 02/28/2016] [Indexed: 10/22/2022]
|
15
|
Caterino M, Petruk AA, Vergara A, Ferraro G, Marasco D, Doctorovich F, Estrin DA, Merlino A. Mapping the protein-binding sites for iridium(iii)-based CO-releasing molecules. Dalton Trans 2016; 45:12206-14. [DOI: 10.1039/c6dt01685e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mass spectrometry, Raman microspectroscopy, circular dichroism and X-ray crystallography have been used to investigate the reaction of CO-releasing molecule Cs2IrCl5CO with the model protein RNase A.
Collapse
Affiliation(s)
- Marco Caterino
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- Napoli
- Italy
| | - Ariel A. Petruk
- Departamento de Química Inorgánica
- Analítica y Química Física/INQUIMAE-CONICET
- University of Buenos Aires
- Ciudad Universitaria
- C1428EHA Buenos Aires
| | - Alessandro Vergara
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- Napoli
- Italy
| | - Giarita Ferraro
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- Napoli
- Italy
| | - Daniela Marasco
- CNR Institute of Biostructures and Bioimages
- Napoli
- Italy
- Department of Pharmacy
- University of Naples Federico II
| | - Fabio Doctorovich
- Departamento de Química Inorgánica
- Analítica y Química Física/INQUIMAE-CONICET
- University of Buenos Aires
- Ciudad Universitaria
- C1428EHA Buenos Aires
| | - Dario A. Estrin
- Departamento de Química Inorgánica
- Analítica y Química Física/INQUIMAE-CONICET
- University of Buenos Aires
- Ciudad Universitaria
- C1428EHA Buenos Aires
| | - Antonello Merlino
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- Napoli
- Italy
| |
Collapse
|
16
|
Calandrini V, Rossetti G, Arnesano F, Natile G, Carloni P. Computational metallomics of the anticancer drug cisplatin. J Inorg Biochem 2015; 153:231-238. [PMID: 26490711 DOI: 10.1016/j.jinorgbio.2015.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 01/22/2023]
Abstract
Cisplatin, cis-diamminedichlorido-platinum(II), is an important therapeutic tool in the struggle against different tumors, yet it is plagued with the emergence of resistance mechanisms after repeated administrations. This hampers greatly its efficacy. Overcoming resistance problems requires first and foremost an integrated and systematic understanding of the structural determinants and molecular recognition processes involving the drug and its cellular targets. Here we review a strategy that we have followed for the last few years, based on the combination of modern tools from computational chemistry with experimental biophysical methods. Using hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) simulations, validated by spectroscopic experiments (including NMR, and CD), we have worked out for the first time at atomic level the structural determinants in solution of platinated cellular substrates. These include the copper homeostasis proteins Ctr1, Atox1, and ATP7A. All of these proteins have been suggested to influence the pre-target resistance mechanisms. Furthermore, coupling hybrid QM/MM simulations with classical Molecular Dynamics (MD) and free energy calculations, based on force field parameters refined by the so-called "Force Matching" procedure, we have characterized the structural modifications and the free energy landscape associated with the recognition between platinated DNA and the protein HMGB1, belonging to the chromosomal high-mobility group proteins HMGB that inhibit the repair of platinated DNA. This may alleviate issues relative to on-target resistance process. The elucidation of the mechanisms by which tumors are sensitive or refractory to cisplatin may lead to the discovery of prognostic biomarkers. The approach reviewed here could be straightforwardly extended to other metal-based drugs.
Collapse
Affiliation(s)
- Vania Calandrini
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany
| | - Giulia Rossetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany; Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, Jülich, Germany; Department of Oncology, Hematology and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany
| | - Fabio Arnesano
- Department of Chemistry, University of Bari "Aldo Moro", via Edoardo Orabona 4, 70125 Bari, Italy
| | - Giovanni Natile
- Department of Chemistry, University of Bari "Aldo Moro", via Edoardo Orabona 4, 70125 Bari, Italy
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
17
|
Martín-Santos C, Michelucci E, Marzo T, Messori L, Szumlas P, Bednarski PJ, Mas-Ballesté R, Navarro-Ranninger C, Cabrera S, Alemán J. Gold(III) complexes with hydroxyquinoline, aminoquinoline and quinoline ligands: Synthesis, cytotoxicity, DNA and protein binding studies. J Inorg Biochem 2015; 153:339-345. [PMID: 26490713 DOI: 10.1016/j.jinorgbio.2015.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/10/2015] [Accepted: 09/30/2015] [Indexed: 12/29/2022]
Abstract
In this article, we report on the synthesis and the chemical and biological characterization of novel gold(III) complexes based on hydroxyl- or amino-quinoline ligands that are evaluated as prospective anticancer agents. To gain further insight into their reactivity and possible mode of action, their interactions with model proteins and standard nucleic acid molecules were investigated.
Collapse
Affiliation(s)
- Cecilia Martín-Santos
- Departamento de Química Inorgánica (Módulo 7), Facultad de Ciencias, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente 7, 28049 Madrid, Spain
| | - Elena Michelucci
- Mass Spectrometry Center (CISM), University of Florence, via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Tiziano Marzo
- Laboratory of Metals in Medicine (MET MED), Department of Chemistry 'Ugo Schiff', University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Luigi Messori
- Laboratory of Metals in Medicine (MET MED), Department of Chemistry 'Ugo Schiff', University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Piotr Szumlas
- Pharmazeutische/Medizinische Chemie, Institut für Pharmazie, Ernst-Moritz-Arndt Universität Greifswald, 17487 Greifswald, Germany
| | - Patrick J Bednarski
- Pharmazeutische/Medizinische Chemie, Institut für Pharmazie, Ernst-Moritz-Arndt Universität Greifswald, 17487 Greifswald, Germany
| | - Rubén Mas-Ballesté
- Departamento de Química Inorgánica (Módulo 7), Facultad de Ciencias, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente 7, 28049 Madrid, Spain
| | - Carmen Navarro-Ranninger
- Departamento de Química Inorgánica (Módulo 7), Facultad de Ciencias, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente 7, 28049 Madrid, Spain
| | - Silvia Cabrera
- Departamento de Química Inorgánica (Módulo 7), Facultad de Ciencias, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente 7, 28049 Madrid, Spain.
| | - José Alemán
- Departamento de Química Orgánica (Módulo 1), Facultad de Ciencias, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente 7, 28049 Madrid, Spain.
| |
Collapse
|
18
|
Darabi F, Marzo T, Massai L, Scaletti F, Michelucci E, Messori L. Reactions of model proteins with aurothiomalate, a clinically established gold(I) drug: The comparison with auranofin. J Inorg Biochem 2015; 149:102-7. [DOI: 10.1016/j.jinorgbio.2015.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/20/2015] [Accepted: 03/24/2015] [Indexed: 12/18/2022]
|
19
|
Ferri N, Facchetti G, Pellegrino S, Ricci C, Curigliano G, Pini E, Rimoldi I. Promising antiproliferative platinum(II) complexes based on imidazole moiety: synthesis, evaluation in HCT-116 cancer cell line and interaction with Ctr-1 Met-rich domain. Bioorg Med Chem 2015; 23:2538-47. [DOI: 10.1016/j.bmc.2015.03.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/12/2015] [Accepted: 03/14/2015] [Indexed: 10/23/2022]
|
20
|
Reactions of cytotoxic metallodrugs with lysozyme in pure DMSO explored through UV–Vis absorption spectroscopy and ESI MS. Biometals 2015; 28:425-30. [DOI: 10.1007/s10534-015-9839-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/17/2015] [Indexed: 10/24/2022]
|
21
|
Paul LEH, Therrien B, Furrer J. Interactions of arene ruthenium metallaprisms with human proteins. Org Biomol Chem 2015; 13:946-53. [DOI: 10.1039/c4ob02194k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interactions between three hexacationic arene ruthenium metallaprisms and human proteins have been studied using NMR spectroscopy, mass spectrometry and circular dichroism spectroscopy, showing that proteins are potential biological targets for these metallaprisms.
Collapse
Affiliation(s)
- Lydia E. H. Paul
- Departement für Chemie und Biochemie
- Universität Bern
- CH-3012 Bern
- Switzerland
| | - Bruno Therrien
- Institut de Chimie
- Université de Neuchâtel
- CH-2000 Neuchâtel
- Switzerland
| | - Julien Furrer
- Departement für Chemie und Biochemie
- Universität Bern
- CH-3012 Bern
- Switzerland
| |
Collapse
|
22
|
Tamasi G, Carpini A, Valensin D, Messori L, Pratesi A, Scaletti F, Jakupec M, Keppler B, Cini R. {Ru(CO)x}-core complexes with selected azoles: Synthesis, X-ray structure, spectroscopy, DFT analysis and evaluation of cytotoxic activity against human cancer cells. Polyhedron 2014. [DOI: 10.1016/j.poly.2014.05.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Spreckelmeyer S, Orvig C, Casini A. Cellular transport mechanisms of cytotoxic metallodrugs: an overview beyond cisplatin. Molecules 2014; 19:15584-610. [PMID: 25268716 PMCID: PMC6271550 DOI: 10.3390/molecules191015584] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/17/2014] [Accepted: 09/22/2014] [Indexed: 12/21/2022] Open
Abstract
The field of medicinal inorganic chemistry has grown consistently during the past 50 years; however, metal-containing coordination compounds represent only a minor proportion of drugs currently on the market, indicating that research in this area has not yet been thoroughly realized. Although platinum-based drugs as cancer chemotherapeutic agents have been widely studied, exact knowledge of the mechanisms governing their accumulation in cells is still lacking. However, evidence suggests active uptake and efflux mechanisms are involved; this may be involved also in other experimental metal coordination and organometallic compounds with promising antitumor activities in vitro and in vivo, such as ruthenium and gold compounds. Such knowledge would be necessary to elucidate the balance between activity and toxicity profiles of metal compounds. In this review, we present an overview of the information available on the cellular accumulation of Pt compounds from in vitro, in vivo and clinical studies, as well as a summary of reports on the possible accumulation mechanisms for different families of experimental anticancer metal complexes (e.g., Ru Au and Ir). Finally, we discuss the need for rationalization of the investigational approaches available to study metallodrug cellular transport.
Collapse
Affiliation(s)
- Sarah Spreckelmeyer
- Dept. Pharmacokinetics, Toxicology and Targeting, Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T1Z1, Canada
| | - Angela Casini
- Dept. Pharmacokinetics, Toxicology and Targeting, Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands.
| |
Collapse
|
24
|
Tanley SWM, Diederichs K, Kroon-Batenburg LMJ, Levy C, Schreurs AMM, Helliwell JR. Carboplatin binding to histidine. Acta Crystallogr F Struct Biol Commun 2014; 70:1135-42. [PMID: 25195881 PMCID: PMC4157408 DOI: 10.1107/s2053230x14016161] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/11/2014] [Indexed: 11/10/2022] Open
Abstract
Carboplatin is a second-generation platinum anticancer agent used for the treatment of a variety of cancers. Previous X-ray crystallographic studies of carboplatin binding to histidine (in hen egg-white lysozyme; HEWL) showed the partial conversion of carboplatin to cisplatin owing to the high NaCl concentration used in the crystallization conditions. HEWL co-crystallizations with carboplatin in NaBr conditions have now been carried out to confirm whether carboplatin converts to the bromine form and whether this takes place in a similar way to the partial conversion of carboplatin to cisplatin observed previously in NaCl conditions. Here, it is reported that a partial chemical transformation takes place but to a transplatin form. Thus, to attempt to resolve purely carboplatin binding at histidine, this study utilized co-crystallization of HEWL with carboplatin without NaCl to eliminate the partial chemical conversion of carboplatin. Tetragonal HEWL crystals co-crystallized with carboplatin were successfully obtained in four different conditions, each at a different pH value. The structural results obtained show carboplatin bound to either one or both of the N atoms of His15 of HEWL, and this particular variation was dependent on the concentration of anions in the crystallization mixture and the elapsed time, as well as the pH used. The structural details of the bound carboplatin molecule also differed between them. Overall, the most detailed crystal structure showed the majority of the carboplatin atoms bound to the platinum centre; however, the four-carbon ring structure of the cyclobutanedicarboxylate moiety (CBDC) remained elusive. The potential impact of the results for the administration of carboplatin as an anticancer agent are described.
Collapse
Affiliation(s)
- Simon W. M. Tanley
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Manchester, Brunswick Street, Manchester M13 9PL, England
| | - Kay Diederichs
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Loes M. J. Kroon-Batenburg
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Colin Levy
- Manchester Institute of Biotechnology (MIB), University of Manchester, 131 Princess Street, Manchester M1 7DN, England
| | - Antoine M. M. Schreurs
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - John R. Helliwell
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Manchester, Brunswick Street, Manchester M13 9PL, England
| |
Collapse
|
25
|
Messori L, Merlino A. Cisplatin binding to proteins: molecular structure of the ribonuclease a adduct. Inorg Chem 2014; 53:3929-31. [PMID: 24694179 DOI: 10.1021/ic500360f] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The crystal structure of the main adduct formed in the reaction between cisplatin and bovine pancreatic ribonuclease is reported here. Notably, in both of the protein molecules present in the asymmetric unit, platinum(II) binding takes place exclusively at the level of Met29. In one of the two molecules, the Gln28 side chain completes the platinum coordination sphere, anchoring the cisplatin fragment to the protein in a bidentate fashion. These results contain interesting implications for understanding the biological chemistry of this important drug.
Collapse
Affiliation(s)
- Luigi Messori
- Department of Chemistry, University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | | |
Collapse
|
26
|
Narváez-Pita X, Ortega-Zuniga C, Acevedo-Morantes CY, Pastrana B, Olivero-Verbel J, Maldonado-Rojas W, Ramírez-Vick JE, Meléndez E. Water soluble molybdenocene complexes: Synthesis, cytotoxic activity and binding studies to ubiquitin by fluorescence spectroscopy, circular dichroism and molecular modeling. J Inorg Biochem 2014; 132:77-91. [DOI: 10.1016/j.jinorgbio.2013.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 11/24/2022]
|
27
|
Messori L, Marchetti L, Massai L, Scaletti F, Guerri A, Landini I, Nobili S, Perrone G, Mini E, Leoni P, Pasquali M, Gabbiani C. Chemistry and Biology of Two Novel Gold(I) Carbene Complexes as Prospective Anticancer Agents. Inorg Chem 2014; 53:2396-403. [DOI: 10.1021/ic401731a] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Luigi Messori
- Laboratory of Metals in Medicine, Department
of Chemistry, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Lorella Marchetti
- Department of Chemistry
and Industrial Chemistry, University of Pisa, via Risorgimento
35, 56126 Pisa, Italy
| | - Lara Massai
- Laboratory of Metals in Medicine, Department
of Chemistry, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Federica Scaletti
- Laboratory of Metals in Medicine, Department
of Chemistry, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Annalisa Guerri
- Laboratory of Metals in Medicine, Department
of Chemistry, University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Ida Landini
- Department of Health Sciences, Section
of Clinical Pharmacology and Oncology, University of Florence viale Pieraccini,
6, 50139 Florence, Italy
| | - Stefania Nobili
- Department of Health Sciences, Section
of Clinical Pharmacology and Oncology, University of Florence viale Pieraccini,
6, 50139 Florence, Italy
| | - Gabriele Perrone
- Department of Health Sciences, Section
of Clinical Pharmacology and Oncology, University of Florence viale Pieraccini,
6, 50139 Florence, Italy
| | - Enrico Mini
- Department of Health Sciences, Section
of Clinical Pharmacology and Oncology, University of Florence viale Pieraccini,
6, 50139 Florence, Italy
| | - Piero Leoni
- Department of Chemistry
and Industrial Chemistry, University of Pisa, via Risorgimento
35, 56126 Pisa, Italy
| | - Marco Pasquali
- Department of Chemistry
and Industrial Chemistry, University of Pisa, via Risorgimento
35, 56126 Pisa, Italy
| | - Chiara Gabbiani
- Department of Chemistry
and Industrial Chemistry, University of Pisa, via Risorgimento
35, 56126 Pisa, Italy
| |
Collapse
|
28
|
Abstract
Platinum-complexes represent some of the most successful groups of clinically used anticancer drugs. Their mechanism of action relies on the formation of stable DNA adducts occurring at the nitrogen in position 7 of guanine (N7) and involving one or two spatially close residues. The formation of stable DNA adducts is recognized as a DNA damaging event and, ultimately, drives cells to death. Nevertheless, nucleobases are not the only reliable targets of these drugs and other biomolecules can be involved. Among them large interest has been devoted to proteins since they contain several potential reactive sites for platinum (His, Met, and Cys) and, in particular, because the reaction of the metal with sulfur containing groups is a kinetically favored process. As a result, the occurrence of protein adducts and DNA-protein cross-links must be further taken into account in order to fully define cisplatin mechanism of action. Herein, we will summarize the most recent experimental evidence collected so far on protein-cisplatin adduct formation to better dissect its correlation with the drug pharmacological profile. Indeed, in addition to modulation of drug bioavailability and toxicity, the potential role of proteins as reaction intermediates or reservoir systems in platinum drugs can be envisaged. Additionally, the effects of Pt-coordinating groups on the chemical reactivity of the metal complexes will be reviewed. From all these outcomes a general model for Pt-based drugs mechanism of action can be drawn which is more articulate than the one currently supported. It claims proteins as reactive intermediates for DNA platination and it defines them as relevant to fully describe the clinical potential of this class of anticancer drugs.
Collapse
Affiliation(s)
- O Pinato
- Department of Pharmaceutical and Pharmacological Science, v. Marzolo 5, 35131 Padova, Italy.
| | | | | |
Collapse
|
29
|
Mügge C, Liu R, Görls H, Gabbiani C, Michelucci E, Rüdiger N, Clement JH, Messori L, Weigand W. Novel platinum(ii) compounds with O,S bidentate ligands: synthesis, characterization, antiproliferative properties and biomolecular interactions. Dalton Trans 2014; 43:3072-86. [DOI: 10.1039/c3dt52284a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Pages BJ. Pulsed Gradient Spin-Echo NMR Studies of the Interactions of Platinum Complexes. Aust J Chem 2014. [DOI: 10.1071/ch13496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
31
|
Messori L, Marzo T, Gabbiani C, Valdes AA, Quiroga AG, Merlino A. Peculiar features in the crystal structure of the adduct formed between cis-PtI2(NH3)2 and hen egg white lysozyme. Inorg Chem 2013; 52:13827-9. [PMID: 24256441 DOI: 10.1021/ic402611m] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The reactivity of cis-diamminediiodidoplatinum(II), cis-PtI2(NH3)2, the iodo analogue of cisplatin, with hen egg white lysozyme (HEWL) was investigated by electrospray ionization mass spectrometry and X-ray crystallography. Interestingly, the study compound forms a stable 1:1 protein adduct for which the crystal structure was solved at 1.99 Å resolution. In this adduct, the Pt(II) center, upon release of one ammonia ligand, selectively coordinates to the imidazole of His15. Both iodide ligands remain bound to platinum, with this being a highly peculiar and unexpected feature. Notably, two equivalent modes of Pt(II) binding are possible that differ only in the location of I atoms with respect to ND1 of His15. The structure of the adduct was compared with that of HEWL-cisplatin, previously described; differences are stressed and their important mechanistic implications discussed.
Collapse
Affiliation(s)
- Luigi Messori
- Department of Chemistry, University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Jared C. Lewis
- Searle
Chemistry Lab, Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
33
|
de Almeida A, Oliveira BL, Correia JD, Soveral G, Casini A. Emerging protein targets for metal-based pharmaceutical agents: An update. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.01.031] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Meier SM, Novak M, Kandioller W, Jakupec MA, Arion VB, Metzler-Nolte N, Keppler BK, Hartinger CG. Identification of the structural determinants for anticancer activity of a ruthenium arene peptide conjugate. Chemistry 2013; 19:9297-307. [PMID: 23712572 DOI: 10.1002/chem.201300889] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Indexed: 11/07/2022]
Abstract
Organometallic Ru(arene)-peptide bioconjugates with potent in vitro anticancer activity are rare. We have prepared a conjugate of a Ru(arene) complex with the neuropeptide [Leu(5)]-enkephalin. [Chlorido(η(6)-p-cymene)(5-oxo-κO-2-{(4-[(N-tyrosinyl-glycinyl-glycinyl-phenylalanyl-leucinyl-NH2)propanamido]-1H-1,2,3-triazol-1-yl)methyl}-4H-pyronato-κO)ruthenium(II)] (8) shows antiproliferative activity in human ovarian carcinoma cells with an IC50 value as low as 13 μM, whereas the peptide or the Ru moiety alone are hardly cytotoxic. The conjugation strategy for linking the Ru(cym) (cym=η(6)-p-cymene) moiety to the peptide involved N-terminal modification of an alkyne-[Leu(5)]-enkephalin with a 2-(azidomethyl)-5-hydroxy-4H-pyran-4-one linker, using Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC), and subsequent metallation with the Ru(cym) moiety. The ruthenium-bioconjugate was characterized by high resolution top-down electrospray ionization mass spectrometry (ESI-MS) with regard to peptide sequence, linker modification and metallation site. Notably, complete sequence coverage was obtained and the Ru(cym) moiety was confirmed to be coordinated to the pyronato linker. The ruthenium-bioconjugate was analyzed with respect to cytotoxicity-determining constituents, and through the bioconjugate models [{2-(azidomethyl)-5-oxo-κO-4H-pyronato-κO}chloride (η(6)-p-cymene)ruthenium(II)] (5) and [chlorido(η(6)-p-cymene){5-oxo-κO-2-([(4-(phenoxymethyl)-1H-1,2,3-triazol-1-yl]methyl)-4H-pyronato-κO}ruthenium(II)] (6) the Ru(cym) fragment with a triazole-carrying pyronato ligand was identified as the minimal unit required to achieve in vitro anticancer activity.
Collapse
Affiliation(s)
- Samuel M Meier
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Del Solar V, Quiñones-Lombraña A, Cabrera S, Padrón JM, Ríos-Luci C, Alvarez-Valdés A, Navarro-Ranninger C, Alemán J. Expanding the synthesis of new trans-sulfonamide platinum complexes: cytotoxicity, SAR, fluorescent cell assays and stability studies. J Inorg Biochem 2013; 127:128-40. [PMID: 23474039 DOI: 10.1016/j.jinorgbio.2013.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/19/2013] [Accepted: 01/21/2013] [Indexed: 01/12/2023]
Abstract
In this manuscript, we describe the synthesis of new trans-N-sulfonamide platinum complexes and their antiproliferative activity (GI50, μM) in human solid tumors cells. The structure activity relationships (SAR), with different new synthesized complexes by variation in ligand, halogen and also in the stereochemistry of the ligand, has been studied. Solubility and stability studies have also been carried out as well as fluorescent cell assays in order to clarify the final target in the tumor cells.
Collapse
Affiliation(s)
- Virginia Del Solar
- Departamento de Química Inorgánica (Módulo 7), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Tasan S, Zava O, Bertrand B, Bernhard C, Goze C, Picquet M, Le Gendre P, Harvey P, Denat F, Casini A, Bodio E. BODIPY–phosphane as a versatile tool for easy access to new metal-based theranostics. Dalton Trans 2013; 42:6102-9. [DOI: 10.1039/c2dt32055j] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Barry NPE, Sadler PJ. Exploration of the medical periodic table: towards new targets. Chem Commun (Camb) 2013; 49:5106-31. [DOI: 10.1039/c3cc41143e] [Citation(s) in RCA: 570] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Martín Santos C, Cabrera S, Ríos-Luci C, Padrón JM, López Solera I, Quiroga AG, Medrano MA, Navarro-Ranninger C, Alemán J. Novel clioquinol and its analogous platinum complexes: importance, role of the halogen substitution and the hydroxyl group of the ligand. Dalton Trans 2013; 42:13343-8. [DOI: 10.1039/c3dt51720a] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Protein metalation by metal-based drugs: reactions of cytotoxic gold compounds with cytochrome c and lysozyme. J Biol Inorg Chem 2012; 17:1293-302. [PMID: 23132507 DOI: 10.1007/s00775-012-0952-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/07/2012] [Indexed: 10/27/2022]
Abstract
Protein metalation processes are crucial for the mechanism of action of several anticancer metallodrugs and warrant deeper characterisation. We have explored the reactions of three cytotoxic gold(III) compounds-namely [(bipy(2Me))(2)Au(2)(μ-O)(2)][PF(6)](2) (where bipy(2Me) is 6,6'-dimethyl-2,2'-bipyridine) (Auoxo6), [(phen(2Me))(2)Au(2)(μ-O)(2)][PF(6)](2) (where phen(2Me) is 2,9-dimethyl-1,10-phenanthroline) (Au(2)phen) and [(bipy(dmb)-H)Au(OH)][PF(6)] [where bipy(dmb)-H is deprotonated 6-(1,1-dimethylbenzyl)-2,2'-bipyridine] (Aubipyc)-with two representative model proteins, i.e. horse heart cytochrome c and hen egg white lysozyme, through UV-visible absorption spectroscopy and electrospray ionisation mass spectrometry (ESI MS) to characterise the inherent protein metalation processes. Notably, Auoxo6 and Au(2)phen produced stable protein adducts where one or more "naked" gold(I) ions are protein-coordinated; very characteristic is the case of cytochrome c, which upon reaction with Auoxo6 or Au(2)phen preferentially forms "tetragold" adducts with four protein-bound gold(I) ions. In turn, Aubipyc afforded monometalated protein adducts where the structural core of the gold(III) centre and its +3 oxidation state are conserved. Auranofin yielded protein derivatives containing the intact auranofin molecule. Additional studies were performed to assess the role played by a reducing environment in protein metalation. Overall, the approach adopted provides detailed insight into the formation of metallodrug-protein derivatives and permits trends, peculiarities and mechanistic details of the underlying processes to be highlighted. In this respect, electrospray ionisation mass spectrometry is a very straightforward and informative research tool. The protein metalation processes investigated critically depend on the nature of both the metal compound and the interacting protein and also on the solution conditions used; thus, predicting with accuracy the nature and the amounts of the adducts formed for a given metallodrug-protein pair is currently extremely difficult.
Collapse
|
40
|
Tanley SWM, Schreurs AMM, Kroon-Batenburg LMJ, Helliwell JR. Room-temperature X-ray diffraction studies of cisplatin and carboplatin binding to His15 of HEWL after prolonged chemical exposure. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1300-6. [PMID: 23143236 PMCID: PMC3515368 DOI: 10.1107/s1744309112042005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/08/2012] [Indexed: 05/01/2023]
Abstract
The anticancer complexes cisplatin and carboplatin are known to bind to both the Nδ and the Nℇ atoms of His15 of hen egg-white lysozyme (HEWL) in the presence of dimethyl sulfoxide (DMSO). However, neither binds in aqueous media after 4 d of crystallization and crystal growth, suggesting that DMSO facilitates cisplatin/carboplatin binding to the N atoms of His15 by an unknown mechanism. Crystals of HEWL cocrystallized with cisplatin in both aqueous and DMSO media, of HEWL cocrystallized with carboplatin in DMSO medium and of HEWL cocrystallized with cisplatin and N-acetylglucosamine (NAG) in DMSO medium were stored for between seven and 15 months. X-ray diffraction studies of these crystals were carried out on a Bruker APEX II home-source diffractometer at room temperature. Room-temperature X-ray diffraction data collection removed the need for cryoprotectants to be used, ruling out any effect that the cryoprotectants might have had on binding to the protein. Both cisplatin and carboplatin still bind to both the Nδ and Nℇ atoms of His15 in DMSO media as expected, but more detail for the cyclobutanedicarboxylate (CBDC) moiety of carboplatin was observed at the Nℇ binding site. However, two molecules of cisplatin were now observed to be bound to His15 in aqueous conditions. The platinum peak positions were identified using anomalous difference electron-density maps as a cross-check with Fo-Fc OMIT electron-density maps. The occupancies of each binding site were calculated using SHELXTL. These results show that over time cisplatin binds to both N atoms of His15 of HEWL in aqueous media, whereas this binding is speeded up in the presence of DMSO. The implication of cisplatin binding to proteins after a prolonged period of time is an important consideration for the length of treatment in patients who are given cisplatin.
Collapse
Affiliation(s)
- Simon W. M. Tanley
- School of Chemistry, Faculty of Engineering and Physical Sciences, University Of Manchester, Brunswick Street, Manchester M13 9PL, England
| | - Antoine M. M. Schreurs
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Loes M. J. Kroon-Batenburg
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - John R. Helliwell
- School of Chemistry, Faculty of Engineering and Physical Sciences, University Of Manchester, Brunswick Street, Manchester M13 9PL, England
- Correspondence e-mail:
| |
Collapse
|
41
|
Casini A, Reedijk J. Interactions of anticancer Pt compounds with proteins: an overlooked topic in medicinal inorganic chemistry? Chem Sci 2012. [DOI: 10.1039/c2sc20627g] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
42
|
Casini A. Exploring the mechanisms of metal-based pharmacological agents via an integrated approach. J Inorg Biochem 2011; 109:97-106. [PMID: 22342074 DOI: 10.1016/j.jinorgbio.2011.12.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/17/2011] [Accepted: 12/21/2011] [Indexed: 11/16/2022]
Abstract
The peculiar chemical properties of metal-based drugs impart innovative pharmacological profiles to this class of therapeutic and diagnostic agents, most likely in relation to novel molecular mechanisms still poorly understood. However, inorganic drugs have been scarcely considered for medicinal applications with respect to classical organic compounds due to the prejudice of the relevant toxic effects evidenced in certain cases. Thus, the development of improved metallodrugs requires clearer understanding of their physiological processing and molecular basis of actions. Among the various issues in the area of medicinal inorganic chemistry, the possibility of target elucidation is essential for the identification of new therapeutic applications for metal compounds or as molecular biological tools. Here we present the results of our recent research in the field, which in our opinion constitute the basis of a systematic and interdisciplinary approach to address some of the critical issues in the study of the molecular mechanisms of metallodrugs' action via the implementation of high-resolution biophysical techniques coupled with more pharmacological methods.
Collapse
Affiliation(s)
- Angela Casini
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland. ,
| |
Collapse
|
43
|
Maiore L, Cinellu MA, Nobili S, Landini I, Mini E, Gabbiani C, Messori L. Gold(III) complexes with 2-substituted pyridines as experimental anticancer agents: solution behavior, reactions with model proteins, antiproliferative properties. J Inorg Biochem 2011; 108:123-7. [PMID: 22173093 DOI: 10.1016/j.jinorgbio.2011.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 10/24/2011] [Accepted: 11/11/2011] [Indexed: 10/15/2022]
Abstract
Gold(III) compounds form a family of promising cytotoxic and potentially anticancer agents that are currently undergoing intense preclinical investigations. Four recently synthesized and characterized gold(III) derivatives of 2-substituted pyridines are evaluated here for their biological and pharmacological behavior. These include two cationic adducts with 2-pyridinyl-oxazolines, [Au(pyox(R))Cl(2)][PF(6)], [pyox(R)=(S)-4-benzyl-2-(pyridin-2-yl)-4,5-dihydrooxazole, I; (S)-4-iso-propyl-2-(pyridin-2-yl)-4,5-dihydrooxazole, II] and two neutral complexes [Au(N,N'OH)Cl(2)], III, and [Au(N,N',O)Cl], IV, containing the deprotonated ligand N-(1-hydroxy-3-iso-propyl-2-yl)pyridine-2-carboxamide, N,N'H,OH, resulting from ring opening of bound pyox(R) ligand of complex II by hydroxide ions. The solution behavior of these compounds was analyzed. These behave as classical prodrugs: activation of the metal center typically takes place through release of the labile chloride ligands while the rest of the molecule is not altered; alternatively, activation may occur through gold(III) reduction. All compounds react eagerly with the model protein cyt c leading to extensive protein metalation. ESI MS experiments revealed details of gold-cyt c interactions and allowed us to establish the nature of protein bound metal containing fragments. The different behavior displayed by I and II compared to III and IV is highlighted. Remarkable cytotoxic properties, against the reference human ovarian carcinoma cell lines A2780/S and A2780/R were disclosed for all tested compounds with IC(50) values ranging from 1.43 to 6.18 μM in the sensitive cell line and from 1.59 to 10.86 μM in the resistant one. The common ability of these compounds to overcome cisplatin resistance is highlighted. The obtained results are thoroughly discussed in the frame of current knowledge on cytotoxic gold compounds.
Collapse
Affiliation(s)
- Laura Maiore
- Department of Chemistry, University of Sassari, Sassari (SS), Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Fragmentation methods on the balance: unambiguous top–down mass spectrometric characterization of oxaliplatin–ubiquitin binding sites. Anal Bioanal Chem 2011; 402:2655-62. [DOI: 10.1007/s00216-011-5523-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 10/19/2011] [Accepted: 10/19/2011] [Indexed: 10/15/2022]
|
45
|
Timerbaev A, Pawlak K, Gabbiani C, Messori L. Recent progress in the application of analytical techniques to anticancer metallodrug proteomics. Trends Analyt Chem 2011. [DOI: 10.1016/j.trac.2011.03.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Wang P, Leung CH, Ma DL, Sun RWY, Yan SC, Chen QS, Che CM. Specific Blocking of CREB/DNA Binding by Cyclometalated Platinum(II) Complexes. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Wang P, Leung CH, Ma DL, Sun RWY, Yan SC, Chen QS, Che CM. Specific blocking of CREB/DNA binding by cyclometalated platinum(II) complexes. Angew Chem Int Ed Engl 2011; 50:2554-8. [PMID: 21370336 DOI: 10.1002/anie.201006887] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Indexed: 11/12/2022]
Affiliation(s)
- Ping Wang
- Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
| | | | | | | | | | | | | |
Collapse
|
48
|
Mügge C, Micheucci E, Boscaro F, Gabbiani C, Messori L, Weigand W. Reactions of metallodrugs with proteins: selective binding of phosphane-based platinum(ii) dichlorides to horse heart cytochrome c probed by ESI MS coupled to enzymatic cleavage. Metallomics 2011; 3:987-90. [DOI: 10.1039/c1mt00069a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The reaction of two cis-diphosphane platinum(ii) dichlorides with horse heart cytochrome c (cyt c) leads to remarkable selectivity in terms of adduct formation.
Collapse
Affiliation(s)
- Carolin Mügge
- Institute of Inorganic and Analytical Chemistry
- Friedrich-Schiller-University Jena
- 07743 Jena
- Germany
| | - Elena Micheucci
- Mass Spectrometry Center (CISM)
- University of Florence
- Firenze
- Italy
| | | | - Chiara Gabbiani
- Laboratory of Metals in Medicine
- Department of Chemistry
- University of Florence
- Firenze
- Italy
| | - Luigi Messori
- Laboratory of Metals in Medicine
- Department of Chemistry
- University of Florence
- Firenze
- Italy
| | - Wolfgang Weigand
- Institute of Inorganic and Analytical Chemistry
- Friedrich-Schiller-University Jena
- 07743 Jena
- Germany
| |
Collapse
|
49
|
Alemán J, del Solar V, Alvarez-Valdés A, Ríos-Luci C, Padrón JM, Navarro-Ranninger C. Novel N-sulfonamide trans-platinum complexes: synthesis, reactivity and in vitro evaluation. MEDCHEMCOMM 2011. [DOI: 10.1039/c1md00070e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Hanif M, Henke H, Meier SM, Martic S, Labib M, Kandioller W, Jakupec MA, Arion VB, Kraatz HB, Keppler BK, Hartinger CG. Is the reactivity of M(II)-arene complexes of 3-hydroxy-2(1H)-pyridones to biomolecules the anticancer activity determining parameter? Inorg Chem 2010; 49:7953-63. [PMID: 20704358 DOI: 10.1021/ic1009785] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydroxypyr(id)ones are versatile ligands for the synthesis of organometallic anticancer agents, equipping them with fine-tunable pharmacological properties. Herein, we report on the preparation, mode of action, and in vitro anticancer activity of Ru(II)- and Os(II)-arene complexes with alkoxycarbonylmethyl-3-hydroxy-2-pyridone ligands. The hydrolysis and binding to amino acids proceed quickly, as characterized by NMR spectroscopy and ESI mass spectrometry. However, the reaction with amino acids causes cleavage of the pyridone ligands from the metal center because the amino acids act as multidentate ligands. A similar behavior was also observed during the reactions with the model proteins ubiquitin and cytochrome c, yielding mainly [protein + M(eta(6)-p-cymene)] adducts (M = Ru, Os). Notably the ligand cleavage of the Os derivative was significantly slower than of its Ru analogue, which could explain its higher activity in in vitro anticancer assays. Furthermore, the reaction of the compounds to 5'-GMP was characterized and coordination to the N7 of the guanine moiety was demonstrated by (1)H NMR spectroscopy and X-ray diffraction analysis. CDK2/Cyclin A protein kinase inhibition studies revealed potent activity of the Ru and Os complexes.
Collapse
Affiliation(s)
- Muhammad Hanif
- University of Vienna, Institute of Inorganic Chemistry, Waehringer Str. 42, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|