1
|
Patel N, Prajapati AK, Jadeja RN, Tripathi IP, Dwivedi N. Experimental, quantum computational study and in vitro antidiabetic activity of oxidovanadium(IV) complexes incorporating 2,2’-bis(pyridylmethyl)amine and polypyridyl ligands. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1774562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Neetu Patel
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - A. K. Prajapati
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - R. N. Jadeja
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - I. P. Tripathi
- Department of Chemistry, MGCGV, Chitrakoot, Satna, Madhya Pradesh, India
| | - N. Dwivedi
- Department of Chemistry, MGCGV, Chitrakoot, Satna, Madhya Pradesh, India
| |
Collapse
|
2
|
Borunda T, Myers AJ, Mary Fisher J, Crans DC, Johnson MD. Confinement Effects on Chemical Equilibria: Pentacyano(Pyrazine)Ferrate(II) Stability Changes within Nanosized Droplets of Water. Molecules 2018; 23:E858. [PMID: 29642558 PMCID: PMC6016957 DOI: 10.3390/molecules23040858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 11/16/2022] Open
Abstract
Nanoscale confinement is known to impact properties of molecules and we observed changes in the reactivity of an iron coordination complex, pentacyano(pyrazine)ferrate(II). The confinement of two coordination complexes in a sodium AOT/isooctane reverse micellar (RM) water droplet was found to dramatically increase the hydrolysis rate of [Fe(CN)₅pyz]3- and change the monomer-dimer equilibria between [Fe(CN)₅pyz]3- and [Fe₂(CN)10pyz]6-. Combined UV-Vis and ¹H-NMR spectra of these complexes in RMs were analyzed and the position of the monomer-dimer equilibrium and the relative reaction times were determined at three different RM sizes. The data show that the hydrolysis rates (loss of pyrazine) are dramatically enhanced in RMs over bulk water and increase as the size of the RM decreases. Likewise, the monomer-dimer equilibrium changes to favor the formation of dimer as the RM size decreases. We conclude that the effects of the [Fe(CN)₅pyz]3- stability is related to its solvation within the RM.
Collapse
Affiliation(s)
- Teofilo Borunda
- Department of Chemistry & Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA.
| | - Alexander J Myers
- Department of Chemistry & Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA.
| | - J Mary Fisher
- Department of Chemistry, Colorado State University, Ft. Collins, CO 80523, USA.
| | - Debbie C Crans
- Department of Chemistry, Colorado State University, Ft. Collins, CO 80523, USA.
| | - Michael D Johnson
- Department of Chemistry & Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|
3
|
Gębicki J, Szymańska-Owczarek M, Pacholczyk-Sienicka B, Jankowski S. Ascorbyl radical disproportionation in reverse micellar systems. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2017.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
García-Rodríguez MDC, Hernández-Cortés LM, Altamirano-Lozano MA. In Vivo Effects of Vanadium Pentoxide and Antioxidants (Ascorbic Acid and Alpha-Tocopherol) on Apoptotic, Cytotoxic, and Genotoxic Damage in Peripheral Blood of Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6797851. [PMID: 27413422 PMCID: PMC4930826 DOI: 10.1155/2016/6797851] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 04/11/2016] [Accepted: 05/16/2016] [Indexed: 12/31/2022]
Abstract
This study was conducted to investigate the effects of vanadium pentoxide (V2O5), ascorbic acid (AA), and alpha-tocopherol (α-TOH) on apoptotic, cytotoxic, and genotoxic activity. Groups of five Hsd:ICR mice were treated with the following: (a) vehicle, distilled water; (b) vehicle, corn oil; (c) AA, 100 mg/kg intraperitoneally (ip); (d) α-TOH, 20 mg/kg by gavage; (e) V2O5, 40 mg/kg by ip injection; (f) AA + V2O5; and (g) α-TOH + V2O5. Genotoxic damage was evaluated by examining micronucleated polychromatic erythrocytes (MN-PCE) obtained from the caudal vein at 0, 24, 48, and 72 h after treatments. Induction of apoptosis and cell viability were assessed at 48 h after treatment in nucleated cells of peripheral blood. Treatment with AA alone reduced basal MN-PCE, while V2O5 treatment marginally increased MN-PCE at all times after injection. Antioxidants treatments prior to V2O5 administration decreased MN-PCE compared to the V2O5 group, with the most significant effect in the AA + V2O5 group. The apoptotic cells increased with all treatments, suggesting that this process may contribute to the elimination of the cells with V2O5-induced DNA damage (MN-PCE). The necrotic cells only increased in the V2O5 group. Therefore, antioxidants such as AA and α-TOH can be used effectively to protect or reduce the genotoxic effects induced by vanadium compounds like V2O5.
Collapse
Affiliation(s)
- María del Carmen García-Rodríguez
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Facultad de Estudios Superiores “Zaragoza”, Universidad Nacional Autónoma de México (UNAM), P.O. Box 9-020, 15000 México, DF, Mexico
| | - Lourdes Montserrat Hernández-Cortés
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Facultad de Estudios Superiores “Zaragoza”, Universidad Nacional Autónoma de México (UNAM), P.O. Box 9-020, 15000 México, DF, Mexico
| | - Mario Agustín Altamirano-Lozano
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Facultad de Estudios Superiores “Zaragoza”, Universidad Nacional Autónoma de México (UNAM), P.O. Box 9-020, 15000 México, DF, Mexico
| |
Collapse
|
5
|
Sripradite J, Miller SA, Johnson MD, Tongraar A, Crans DC. How Interfaces Affect the Acidity of the Anilinium Ion. Chemistry 2016; 22:3873-80. [DOI: 10.1002/chem.201504804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Jarukorn Sripradite
- School of Chemistry; Institute of Science; Suranaree University of Technology; Nakhon Ratchasima 30000 Thailand
- Department of Chemistry; Colorado State University; Fort Collins CO 80523 USA
- College of Industrial Technology; King Mongkut's University of Technology North Bangkok; Bangkok 10800 Thailand
| | - Susannah A. Miller
- Department of Chemistry; Colorado State University; Fort Collins CO 80523 USA
| | - Michael D. Johnson
- Department of Chemistry and Biochemistry; New Mexico State University; Las Cruces NM 88003 USA
| | - Anan Tongraar
- School of Chemistry; Institute of Science; Suranaree University of Technology; Nakhon Ratchasima 30000 Thailand
| | - Debbie C. Crans
- Department of Chemistry; Colorado State University; Fort Collins CO 80523 USA
| |
Collapse
|
6
|
Ayres ZJ, Newton ME, Macpherson JV. Quantitative analysis of trace palladium contamination in solution using electrochemical X-ray fluorescence (EC-XRF). Analyst 2016; 141:3349-57. [DOI: 10.1039/c6an00340k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrochemical X-ray fluorescence for the quantitative analysis of trace level Pd in solution in the presence of excess electroactive species.
Collapse
Affiliation(s)
- Zoë J. Ayres
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | | | |
Collapse
|
7
|
Crans DC. Antidiabetic, Chemical, and Physical Properties of Organic Vanadates as Presumed Transition-State Inhibitors for Phosphatases. J Org Chem 2015; 80:11899-915. [PMID: 26544762 DOI: 10.1021/acs.joc.5b02229] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Studies of antidiabetic vanadium compounds, specifically the organic vanadate esters, are reviewed with regard to their chemistry and biological properties. The compounds are described from the perspective of how the fundamental chemistry and properties of organic vanadate esters impact their effects as inhibitors for phosphatases based on the structural information obtained from vanadium-phosphatase complexes. Vanadium compounds have been reported to have antidiabetic properties for more than a century. The structures and properties of organic vanadate complexes are reviewed, and the potency of such vanadium coordination complexes as antidiabetic agents is described. Because such compounds form spontaneously in aqueous environments, the reactions with most components in any assay or cellular environment has potential to be important and should be considered. Generally, the active form of vanadium remains elusive, although studies have been reported of a number of promising vanadium compounds. The description of the antidiabetic properties of vanadium compounds is described here in the context of recent characterization of vanadate-phosphatase protein structures by data mining. Organic vanadate ester compounds are generally four coordinate or five coordinate with the former being substrate analogues and the latter being transition-state analogue inhibitors. These studies demonstrated a framework for characterization of five-coordinate trigonal bipyramidal vanadium inhibitors by comparison with the reported vanadium-protein phosphatase complexes. The binding of the vanadium to the phosphatases is either as a five-coordinate exploded transition-state analogue or as a high energy intermediate, respectively. Even if potency as an inhibitor requires trigonal bipyramidal geometry of the vanadium when bound to the protein, such geometry can be achieved upon binding from compounds with other geometries. Desirable properties of ligands are identified and analyzed. Ligand interactions, as reported in one peptidic substrate, are favorable so that complementarity between phosphatase and coordinating ligand to the vanadium can be established resulting in a dramatic enhancement of the inhibitory potency. These considerations point to a frameshift in ligand design for vanadium complexes as phosphatase inhibitors and are consistent with other small molecule having much lower affinities. Combined, these studies do suggest that if effective delivery of potentially active antidiabetic compound such a the organic vanadate peptidic substrate was possible the toxicity problems currently reported for the salts and some of the complexes may be alleviated and dramatic enhancement of antidiabetic vanadium compounds may result.
Collapse
Affiliation(s)
- Debbie C Crans
- Department of Chemistry and Cell and Molecular Biology Program, Colorado State University , 1301 Center Avenue, Fort Collins, Colorado 80523, United States
| |
Collapse
|
8
|
Horton DC, VanDerveer D, Krzystek J, Telser J, Pittman T, Crans DC, Holder AA. Spectroscopic Characterization of L-ascorbic Acid-induced Reduction of Vanadium(V) Dipicolinates: Formation of Vanadium(III) and Vanadium(IV) Complexes from Vanadium(V) Dipicolinate Derivatives. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2013.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Kobayashi K, Seike Y, Saeki A, Kozawa T, Takeuchi F, Tsubaki M. A pulse radiolysis study of the dynamics of ascorbic acid free radicals within a liposomal environment. Chemphyschem 2014; 15:2994-7. [PMID: 25056365 DOI: 10.1002/cphc.201402297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Indexed: 01/01/2023]
Abstract
The dynamics of free-radical species in a model cellular system are examined by measuring the formation and decay of ascorbate radicals within a liposome with pulse radiolysis techniques. Upon pulse radiolysis of an N2O-saturated aqueous solution containing ascorbate-loaded liposome vesicles, ascorbate radicals are formed by the reaction of OH(·) radicals with ascorbate in unilamellar vesicles exclusively, irrespective of the presence of vesicle lipids. The radicals are found to decay rapidly compared with the decay kinetics in an aqueous solution. The distinct radical reaction kinetics in the vesicles and in bulk solution are characterized, and the kinetic data are analyzed.
Collapse
Affiliation(s)
- Kazuo Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka (Japan).
| | | | | | | | | | | |
Collapse
|
10
|
Lorenz BB, Crans DC, Johnson MD. Electron-Transfer Rate Enhancements in Nanosized Waterpools. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402307] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Kundu S, Maity S, Weyhermüller T, Ghosh P. Oxidovanadium Catechol Complexes: Radical versus Non-Radical States and Redox Series. Inorg Chem 2013; 52:7417-30. [DOI: 10.1021/ic400166z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Suman Kundu
- Department
of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-103, India
| | - Suvendu Maity
- Department
of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-103, India
| | - Thomas Weyhermüller
- Max-Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Muelheim an der Ruhr, Germany
| | - Prasanta Ghosh
- Department
of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-103, India
| |
Collapse
|
12
|
Kundu S, Maity S, Maity AN, Ke SC, Ghosh P. Stabilization of oxidovanadium(iv) by organic radicals. Dalton Trans 2013; 42:4586-601. [DOI: 10.1039/c2dt32693k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Lemons BG, Richens DT, Anderson A, Sedgwick M, Crans DC, Johnson MD. Stabilization of a vanadium(v)–catechol complex by compartmentalization and reduced solvation inside reverse micelles. NEW J CHEM 2013. [DOI: 10.1039/c2nj40524e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Johnson MD, Lorenz BB, Wilkins PC, Lemons BG, Baruah B, Lamborn N, Stahla M, Chatterjee PB, Richens DT, Crans DC. Switching Off Electron Transfer Reactions in Confined Media: Reduction of [Co(dipic)2]− and [Co(edta)]− by Hexacyanoferrate(II). Inorg Chem 2012; 51:2757-65. [DOI: 10.1021/ic201247v] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael D. Johnson
- Department
of Chemistry and
Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003-8001, United States
| | - Bret B. Lorenz
- Department
of Chemistry and
Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003-8001, United States
| | - Patricia C. Wilkins
- Department
of Chemistry and
Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003-8001, United States
| | - Brant G. Lemons
- Department
of Chemistry and
Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003-8001, United States
| | - Bharat Baruah
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872,
United States
| | - Nathan Lamborn
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872,
United States
| | - Michelle Stahla
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872,
United States
| | - Pabitra B. Chatterjee
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872,
United States
| | - David T. Richens
- Department
of Chemistry and
Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003-8001, United States
| | - Debbie C. Crans
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872,
United States
| |
Collapse
|
15
|
How environment affects drug activity: Localization, compartmentalization and reactions of a vanadium insulin-enhancing compound, dipicolinatooxovanadium(V). Coord Chem Rev 2011. [DOI: 10.1016/j.ccr.2011.01.032] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
|
17
|
Vodolazkaya NA, Mchedlov-Petrossyan NO, Salamanova NV, Surov YN, Doroshenko AO. Molecular spectroscopy studies of solvent properties of dispersed ‘water pools’: Fluorescein and 2,7-dichlorofluorescein in reversed AOT-based microemulsions. J Mol Liq 2010. [DOI: 10.1016/j.molliq.2010.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Warren JJ, Mayer JM. Tuning of the thermochemical and kinetic properties of ascorbate by its local environment: solution chemistry and biochemical implications. J Am Chem Soc 2010; 132:7784-93. [PMID: 20476757 DOI: 10.1021/ja102337n] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ascorbate (vitamin C) is a ubiquitous biological cofactor. While its aqueous solution chemistry has long been studied, many in vivo reactions of ascorbate occur in enzyme active sites or at membrane interfaces, which have varying local environments. This report shows that the rate and driving force of oxidations of two ascorbate derivatives by the TEMPO radical (2,2',6,6'-tetramethylpiperidin-1-oxyl) in acetonitrile are very sensitive to the presence of various additives. These reactions proceed by the transfer of a proton and an electron (a hydrogen atom), as is typical of biological ascorbate reactions. The measured rate and equilibrium constants vary substantially with added water or other polar solutes in acetonitrile solutions, indicating large shifts in the reducing power of ascorbate. The correlation of rate and equilibrium constants indicates that this effect has a thermochemical origin rather than being a purely kinetic effect. This contrasts with previous examples of solvent effects on hydrogen atom transfer reactions. Potential biological implications of this apparently unique effect are discussed.
Collapse
Affiliation(s)
- Jeffrey J Warren
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, USA.
| | | |
Collapse
|
19
|
Crans DC, Baruah B, Ross A, Levinger NE. Impact of confinement and interfaces on coordination chemistry: Using oxovanadate reactions and proton transfer reactions as probes in reverse micelles. Coord Chem Rev 2009. [DOI: 10.1016/j.ccr.2009.01.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Roess DA, Smith SML, Winter P, Zhou J, Dou P, Baruah B, Trujillo AM, Levinger NE, Yang X, Barisas BG, Crans DC. Effects of vanadium-containing compounds on membrane lipids and on microdomains used in receptor-mediated signaling. Chem Biodivers 2008; 5:1558-1570. [PMID: 18729092 DOI: 10.1002/cbdv.200890144] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There is increasing evidence for the involvement of plasma membrane microdomains in insulin receptor function. Moreover, disruption of these structures, which are typically enriched in sphingomyelin and cholesterol, results in insulin resistance. Treatment strategies for insulin resistance include the use of vanadium (V) compounds which have been shown in animal models to enhance insulin responsiveness. One possible mechanism for insulin-enhancing effects might involve direct effects of V compounds on membrane lipid organization. These changes in lipid organization promote the partitioning of insulin receptors and other receptors into membrane microdomains where receptors are optimally functional. To explore this possibility, we have used several strategies involving V complexes such as [VO(2)(dipic)](-) (pyridin-2,6-dicarboxylatodioxovanadium(V)), decavanadate (V(10)O(28)(6-), V(10)), BMOV (bis(maltolato)oxovanadium(IV)), and [VO(saltris)](2) (2-salicylideniminato-2-(hydroxymethyl)-1,3-dihydroxypropane-oxovanadium(V)). Our strategies include an evaluation of interactions between V-containing compounds and model lipid systems, an evaluation of the effects of V compounds on lipid fluidity in erythrocyte membranes, and studies of the effects of V-containing compounds on signaling events initiated by receptors known to use membrane microdomains as signaling platforms.
Collapse
Affiliation(s)
- Deborah A Roess
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1872, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|