1
|
Rana S, Shahid S, Iqbal MS, Arshad A, Khan D. A nanoformulation of cisplatin with arabinoxylan having enhanced activity against hepatocellular carcinoma through upregulation of apoptotic and necroptotic pathways. Heliyon 2024; 10:e31057. [PMID: 38774332 PMCID: PMC11107364 DOI: 10.1016/j.heliyon.2024.e31057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/24/2024] Open
Abstract
Cisplatin is a versatile drug used to treat various types of cancer, but it is associated with high toxicity and resistance problems. Several approaches, including nanotechnology, have been adopted to minimize the toxic effects and to overcome the resistance of cisplatin. Most of the nanoformulations involve the use of synthetic or semisynthetic polymers as drug carriers. In this study arabinoxylan nanoparticles have been investigated as drug reservoirs for intestinal drug delivery. The drug-loaded arabinoxylan nanoparticles (size: ∼1.8 nm, polydispersity index: 0.3 ± 0.04) were prepared and nanoformulation was characterized by various analytical techniques. The nanoformulation was found to be stable (zeta potential: 31.6 ± 1.1 mV). An in vitro cytotoxicity against HepG2 and HEK 293 cell lines was studied. The cell viability analysis showed greater efficacy than the standard cisplatin (IC50: cisplatin 2.4, arabinoxylan nanoformulation 1.3 μg mL-1). The expression profile of carcinogenic markers revealed a six-fold upregulation of MLKL and 0.9-fold down regulation of KRAS, suggesting the activation of the necroptotic pathway by the drug-loaded nanoparticles. The nanoformulation exhibited a sustained release of cisplatin with a cumulative release of ∼40 % (at pH 7.4) and ∼30 % (at pH 5.5) over a period of 12 h with very low initial burst. The study suggests that the use of the new nanoformulation can significantly reduce the required dose of cisplatin without compromising efficacy and more efficient release at basic pH.
Collapse
Affiliation(s)
- Sidra Rana
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan
| | - Sania Shahid
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan
| | - Mohammad Saeed Iqbal
- Department of Chemistry, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan
| | - Adnan Arshad
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan
| | - Dilawar Khan
- Atta Ur Rahman School of Applied Biosciences, National University of Sciences & Technology, H-12, Islamabad, 44000, Pakistan
| |
Collapse
|
2
|
Tao H, Tan J, Zhang H, Ren H, Cai Z, Liu H, Wen B, Du J, Li G, Chen S, Xiao H, Deng Z. cGAS-STING Pathway Activation and Systemic Anti-Tumor Immunity Induction via Photodynamic Nanoparticles with Potent Toxic Platinum DNA Intercalator Against Uveal Melanoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302895. [PMID: 37807827 PMCID: PMC10667795 DOI: 10.1002/advs.202302895] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/01/2023] [Indexed: 10/10/2023]
Abstract
The cGAS-STING pathway, as a vital innate immune signaling pathway, has attracted considerable attention in tumor immunotherapy research. However, STING agonists are generally incapable of targeting tumors, thus limiting their clinical applications. Here, a photodynamic polymer (P1) is designed to electrostatically couple with 56MESS-a cationic platinum (II) agent-to form NPPDT -56MESS. The accumulation of NPPDT -56MESS in the tumors increases the efficacy and decreases the systemic toxicity of the drugs. Moreover, NPPDT -56MESS generates reactive oxygen species (ROS) under the excitation with an 808 nm laser, which then results in the disintegration of NPPDT -56MESS. Indeed, the ROS and 56MESS act synergistically to damage DNA and mitochondria, leading to a surge of cytoplasmic double-stranded DNA (dsDNA). This way, the cGAS-STING pathway is activated to induce anti-tumor immune responses and ultimately enhance anti-cancer activity. Additionally, the administration of NPPDT -56MESS to mice induces an immune memory effect, thus improving the survival rate of mice. Collectively, these findings indicate that NPPDT -56MESS functions as a chemotherapeutic agent and cGAS-STING pathway agonist, representing a combination chemotherapy and immunotherapy strategy that provides novel modalities for the treatment of uveal melanoma.
Collapse
Affiliation(s)
- Hui Tao
- Department of OphthalmologyThe Third Xiangya HospitalCentral South UniversityChangshaHunan410013P. R. China
| | - Jia Tan
- Eye Center of Xiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
- Hunan Key Laboratory of Ophthalmology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaHunan410008P. R. China
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular SciencesLaboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hong Ren
- Department of OphthalmologyThe Third Xiangya HospitalCentral South UniversityChangshaHunan410013P. R. China
| | - Ziyi Cai
- Department of OphthalmologyThe Third Xiangya HospitalCentral South UniversityChangshaHunan410013P. R. China
| | - Hanhan Liu
- Department of OphthalmologyThe Third Xiangya HospitalCentral South UniversityChangshaHunan410013P. R. China
| | - Bingyu Wen
- Department of OphthalmologyThe Third Xiangya HospitalCentral South UniversityChangshaHunan410013P. R. China
| | - Jiaqi Du
- Department of OphthalmologyThe Third Xiangya HospitalCentral South UniversityChangshaHunan410013P. R. China
| | - Gaoyang Li
- Department of OphthalmologyThe Third Xiangya HospitalCentral South UniversityChangshaHunan410013P. R. China
| | - Shijie Chen
- Department of Spine SurgeryThe Third Xiangya HospitalCentral South UniversityChangshaHunan410013P. R. China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular SciencesLaboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zhihong Deng
- Department of OphthalmologyThe Third Xiangya HospitalCentral South UniversityChangshaHunan410013P. R. China
| |
Collapse
|
3
|
Leventi AA, Braddick HJ, Billimoria K, Wallace GQ, Goenaga-Infante H, Tomkinson NCO, Faulds K, Graham D. Synthesis, characterisation and multi-modal intracellular mapping of cisplatin nano-conjugates. Chem Commun (Camb) 2023; 59:6395-6398. [PMID: 37157999 DOI: 10.1039/d3cc00925d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The synthesis of nanocarriers for the delivery of the antitumor drug cisplatin is reported. Multimodal-imaging consisting of surface enhanced Raman scattering and laser ablation inductively coupled plasma time of flight mass spectrometry was used to visualise the intracellular uptake of both the nanocarrier and drug.
Collapse
Affiliation(s)
- Aristea Anna Leventi
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
- National Measurement Laboratory, LGC, Teddington, Middlesex, TW11 0LY, UK
| | - Henry J Braddick
- Department of Pure and Applied Chemistry, WestCHEM, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Kharmen Billimoria
- National Measurement Laboratory, LGC, Teddington, Middlesex, TW11 0LY, UK
| | - Gregory Q Wallace
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | | | - Nicholas C O Tomkinson
- Department of Pure and Applied Chemistry, WestCHEM, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Karen Faulds
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| | - Duncan Graham
- Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
4
|
Camacho C, Maciel D, Tomás H, Rodrigues J. Biological Effects in Cancer Cells of Mono- and Bidentate Conjugation of Cisplatin on PAMAM Dendrimers: A Comparative Study. Pharmaceutics 2023; 15:pharmaceutics15020689. [PMID: 36840012 PMCID: PMC9960565 DOI: 10.3390/pharmaceutics15020689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Cisplatin (cis-diamminedichloroplatinum(II)) is a potent chemotherapeutic agent commonly used to treat cancer. However, its use also leads to serious side effects, such as nephrotoxicity, ototoxicity, and cardiotoxicity, which limit the dose that can be safely administered to patients. To minimize these problems, dendrimers may be used as carriers for cisplatin through the coordination of their terminal functional groups to platinum. Here, cisplatin was conjugated to half-generation anionic PAMAM dendrimers in mono- and bidentate forms, and their biological effects were assessed in vitro. After preparation and characterization of the metallodendrimers, their cytotoxicity was evaluated against several cancer cell lines (A2780, A2780cisR, MCF-7, and CACO-2 cells) and a non-cancer cell line (BJ cells). The results showed that all the metallodendrimers were cytotoxic and that the cytotoxicity level depended on the cell line and the type of coordination mode (mono- or bidentate). Although, in this study, a correlation between dendrimer generation (number of carried metallic fragments) and cytotoxicity could not be completely established, the monodentate coordination form of cisplatin resulted in lower IC50 values, thus revealing a more accessible cisplatin release from the dendritic scaffold. Moreover, most of the metallodendrimers were more potent than the cisplatin, especially for the A2780 and A2780cisR cell lines, which showed higher selectivity than for non-cancer cells (BJ cells). The monodentate G0.5COO(Pt(NH3)2Cl)8 and G2.5COO(Pt(NH3)2Cl)32 metallodendrimers, as well as the bidentate G2.5COO(Pt(NH3)2)16 metallodendrimer, were even more active towards the cisplatin-resistant cell line (A2780cisR cells) than the correspondent cisplatin-sensitive one (A2780 cells). Finally, the effect of the metallodendrimers on the hemolysis of human erythrocytes was neglectable, and metallodendrimers' interaction with calf thymus DNA seemed to be stronger than that of free cisplatin.
Collapse
|
5
|
Verma N, Tiwari A, Bajpai J, Bajpai AK. Swelling triggered release of cisplatin from gelatin coated gold nanoparticles. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2025396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Nishi Verma
- Department of Chemistry, Government V.Y.T.PG Autonomous College, Durg, CG, India
| | - Alka Tiwari
- Department of Chemistry, Government V.Y.T.PG Autonomous College, Durg, CG, India
| | - Jaya Bajpai
- Department of Chemistry, Government Science College, Bose Memorial Research Lab, Jabalpur, MP, India
| | - Anil Kumar Bajpai
- Department of Chemistry, Government Science College, Bose Memorial Research Lab, Jabalpur, MP, India
| |
Collapse
|
6
|
Nazlı H, Gedik G. In-vitro evaluation of dendrimeric formulation of oxaliplatin. Pharm Dev Technol 2021; 26:750-764. [PMID: 34154500 DOI: 10.1080/10837450.2021.1944205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of this study is, preparing various dendrimeric formulations of oxaliplatin and investigating their properties. First of all, the solubility enhancement capabilities of polyamidoamine (PAMAM) G3.5 and PAMAM G4.5 dendrimers were investigated. The results showed that oxaliplatin solubility mostly increasing linearly with dendrimer concentration. Additionally, the increase was more notable in PAMAM G4.5 dendrimers. Then, drug-dendrimer complexes were prepared in different mediums, since the medium used can affect the amount of drug-loaded to dendrimers. Prepared complexes were examined for loading capacity and loading efficiency. It was found that PAMAM G4.5 dendrimers can complex with 2- to 5-fold more oxaliplatin than PAMAM G3.5. Finally, oxaliplatin was modified to a platinum (IV) compound to prepare chemical drug-dendrimer conjugates. Ester bonds were established by Steglich esterification through the hydroxyl group of modified oxaliplatin and the carboxyl groups of the dendrimers. The formulations were characterized by UV, IR, NMR spectroscopy, and dynamic light scattering techniques. PAMAM G3.5 conjugate was further evaluated for the cytotoxicity test. The IC50 value of PAMAM G3.5 conjugate was found as 0.72 µM. For unmodified oxaliplatin, this value was 14.03 µM. As a result, a dendrimer-based drug delivery system that has been found promising for further improvement has been developed successfully.
Collapse
Affiliation(s)
- Hakan Nazlı
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Trakya University, Edirne, Turkey
| | - Gülşah Gedik
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Trakya University, Edirne, Turkey
| |
Collapse
|
7
|
Nanoparticle-mediated convection-enhanced delivery of a DNA intercalator to gliomas circumvents temozolomide resistance. Nat Biomed Eng 2021; 5:1048-1058. [PMID: 34045730 PMCID: PMC8497438 DOI: 10.1038/s41551-021-00728-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 04/12/2021] [Indexed: 02/01/2023]
Abstract
In patients with glioblastoma, resistance to the chemotherapeutic temozolomide (TMZ) limits any survival benefits conferred by the drug. Here we show that the convection-enhanced delivery of nanoparticles containing disulfide bonds (which are cleaved in the reductive environment of the tumour) and encapsulating an oxaliplatin prodrug and a cationic DNA intercalator inhibit the growth of TMZ-resistant cells from patient-derived xenografts, and hinder the progression of TMZ-resistant human glioblastoma tumours in mice without causing any detectable toxicity. Genome-wide RNA profiling and metabolomic analyses of a glioma cell line treated with the cationic intercalator or with TMZ showed substantial differences in the signalling and metabolic pathways altered by each drug. Our findings suggest that the combination of anticancer drugs with distinct mechanisms of action with selective drug release and convection-enhanced delivery may represent a translational strategy for the treatment of TMZ-resistant gliomas.
Collapse
|
8
|
Affiliation(s)
- Xianxun Sun
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of Sciences Wuhan 430071 China
- College of Life ScienceJiang Han University Wuhan 430056 China
| | - Zongqiang Cui
- State Key Laboratory of VirologyWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of Sciences Wuhan 430071 China
| |
Collapse
|
9
|
Moussa YE, Venkataramanan NS, Wheate NJ. Demonstration of the first known 1:2 host-guest encapsulation of a platinum anticancer complex within a macrocycle. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-019-00960-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Saeedi M, Eslamifar M, Khezri K, Dizaj SM. Applications of nanotechnology in drug delivery to the central nervous system. Biomed Pharmacother 2019; 111:666-675. [PMID: 30611991 DOI: 10.1016/j.biopha.2018.12.133] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/21/2018] [Accepted: 12/30/2018] [Indexed: 12/31/2022] Open
Abstract
In recent years, the researchers and drug designers have given growing attention to new nanotechnology strategies to improve drug delivery to the central nervous system (CNS). Nanotechnology has a great potential to affect the treatment of neurological disorders, mainly Alzheimer's disease, Parkinson's disease, brain tumors, and stroke. With regard to neurodegeneration, several studies showed that nanomaterials have been successfully used for the treatments of CNS disorders. In this regard, nanocarriers have facilitated the targeted delivery of chemotherapeutics resulting in the efficient inhibition of disease progression in malignant brain tumors. Therefore, the most efficacious application of nanomaterials is the use of these substances in the treatment of CNS disease that enhances the overall effect of drug and highlights the importance of nano-therapeutics. This study was conducted to review the evidence on the applications of nanotechnology in designing drug delivery systems with the ability to cross through the blood-brain barrier (BBB) in order to transfer the therapeutic agents to the CNS.
Collapse
Affiliation(s)
- Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Masoumeh Eslamifar
- Department of Environmental Health Engineering, Faculty of Health, Mazandaran University of Medical Science, Sari, Iran.
| | - Khadijeh Khezri
- Student Research Committee, Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Science, Sari, Iran..
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center and Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Xiao H, Yan L, Dempsey EM, Song W, Qi R, Li W, Huang Y, Jing X, Zhou D, Ding J, Chen X. Recent progress in polymer-based platinum drug delivery systems. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.07.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Pang CT, Ammit AJ, Ong YQE, Wheate NJ. para-Sulfonatocalix[4]arene and polyamidoamine dendrimer nanocomplexes as delivery vehicles for a novel platinum anticancer agent. J Inorg Biochem 2017; 176:1-7. [PMID: 28810174 DOI: 10.1016/j.jinorgbio.2017.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/19/2017] [Accepted: 08/04/2017] [Indexed: 11/20/2022]
Abstract
Novel para-sulfonatocalix[4]arene (sCX[4]) and polyamidoamine (PAMAM) dendrimer nanocomplexes were evaluated as delivery vehicles for the platinum anticancer agent [(1,10-phenanthroline)(1S,2S-diaminocyclohexane)platinum(II)] chloride (PHENSS). Different ratios of sCX[4] to PHENSS were tested for their compatibility, with a ratio of 6:1 sCX[4]:PHENSS having the best solubility. The loading of sCX[4], and sCX[4]-bound PHENSS, onto three different generations of PAMAM dendrimers (G3.0-5.0) was examined using UV-visible spectrophotometry. The quantity of sCX[4] bound was found to increase exponentially with dendrimer size: G3, 15 sCX[4] molecules per dendrimer; G4, 37; and G5, 78. Similarly, the loading of sCX[4]-bound PHENSS also increased with increasing dendrimer size: G3, 7 PHENSS molecules per dendrimer; G4, 14; and G5, 28.5. The loading of sCX[4]-bound PHENSS molecules is significantly lower when compared with that of sCX[4], which indicates that less than half of the binding sites were occupied (45, 44, and 44%, respectively). By 1H NMR and UV-vis analysis, the nanocomplex was found to be stable in NaCl solutions at concentrations up to 150mM. While PHENSS is more active in vitro than cisplatin against the human breast cancer cell line, MCF-7, delivery of PHENSS using the sCX[4]-dendrimer nanocomplexes, regardless of dendrimer generation, had little effect on PHENSS cytotoxicity. The results of this study may have application in the delivery of a variety of small molecule metal-based drugs for which chemical conjugation to a nanoparticle is undesired or not feasible.
Collapse
Affiliation(s)
- Chi Ting Pang
- Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, The University of Sydney, NSW 2037, Australia; School of Life Sciences, Faculty of Science, University of Technology, Sydney, NSW 2007, Australia
| | | | - Nial J Wheate
- Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
13
|
Fornaguera C, Solans C. Polymeric Nanoparticles for Drug Delivery in Neurological Diseases. CURRENT PATHOBIOLOGY REPORTS 2016. [DOI: 10.1007/s40139-016-0118-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Duan X, He C, Kron SJ, Lin W. Nanoparticle formulations of cisplatin for cancer therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:776-91. [PMID: 26848041 PMCID: PMC4975677 DOI: 10.1002/wnan.1390] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/16/2015] [Accepted: 12/27/2015] [Indexed: 12/12/2022]
Abstract
The genotoxic agent cisplatin, used alone or in combination with radiation and/or other chemotherapeutic agents, is an important first-line chemotherapy for a broad range of cancers. The clinical utility of cisplatin is limited both by intrinsic and acquired resistance and dose-limiting normal tissue toxicity. That cisplatin shows little selectivity for tumor versus normal tissue may be a critical factor limiting its value. To overcome the low therapeutic ratio of the free drug, macromolecular, liposomal, and nanoparticle drug delivery systems have been explored toward leveraging the enhanced permeability and retention effect and promoting delivery of cisplatin to tumors. Here, we survey recent advances in nanoparticle formulations of cisplatin, focusing on agents that show promise in preclinical or clinical settings. WIREs Nanomed Nanobiotechnol 2016, 8:776-791. doi: 10.1002/wnan.1390 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Xiaopin Duan
- Department of Chemistry, University of Chicago, 929 E 57 St, Chicago, IL 60637, USA
| | - Chunbai He
- Department of Chemistry, University of Chicago, 929 E 57 St, Chicago, IL 60637, USA
| | - Stephen J. Kron
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 E 57 St, Chicago, IL 60637, USA
| | - Wenbin Lin
- Department of Chemistry, University of Chicago, 929 E 57 St, Chicago, IL 60637, USA
| |
Collapse
|
15
|
Jimenez-Ruiz A, Grueso E, Perez-Tejeda P, Muriel-Delgado F, Torres-Marquez C. Electrochemiluminescent (ECL) [Ru(bpy)3]2+/PAMAM dendrimer reactions: coreactant effect and 5-fluorouracil/dendrimer complex formation. Anal Bioanal Chem 2016; 408:7213-24. [DOI: 10.1007/s00216-016-9816-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/03/2016] [Accepted: 07/20/2016] [Indexed: 01/18/2023]
|
16
|
Medříková Z, Novohradsky V, Zajac J, Vrána O, Kasparkova J, Bakandritsos A, Petr M, Zbořil R, Brabec V. Enhancing Tumor Cell Response to Chemotherapy through the Targeted Delivery of Platinum Drugs Mediated by Highly Stable, Multifunctional Carboxymethylcellulose-Coated Magnetic Nanoparticles. Chemistry 2016; 22:9750-9. [DOI: 10.1002/chem.201600949] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/16/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Zdenka Medříková
- Regional Centre of Advanced Technologies and Materials; Department of Physical Chemistry; Faculty of Science; Palacky University; 17. listopadu 12 77146 Olomouc Czech Republic
| | - Vojtech Novohradsky
- Institute of Biophysics; Academy of Sciences of the Czech Republic, v.v.i.; Kralovopolska 135 612 65 Brno Czech Republic
| | - Juraj Zajac
- Institute of Biophysics; Academy of Sciences of the Czech Republic, v.v.i.; Kralovopolska 135 612 65 Brno Czech Republic
- Department of Biophysics; Faculty of Science; Palacky University; 17. listopadu 12 77146 Olomouc Czech Republic
| | - Oldřich Vrána
- Institute of Biophysics; Academy of Sciences of the Czech Republic, v.v.i.; Kralovopolska 135 612 65 Brno Czech Republic
| | - Jana Kasparkova
- Institute of Biophysics; Academy of Sciences of the Czech Republic, v.v.i.; Kralovopolska 135 612 65 Brno Czech Republic
| | - Aristides Bakandritsos
- Regional Centre of Advanced Technologies and Materials; Department of Physical Chemistry; Faculty of Science; Palacky University; 17. listopadu 12 77146 Olomouc Czech Republic
| | - Martin Petr
- Regional Centre of Advanced Technologies and Materials; Department of Physical Chemistry; Faculty of Science; Palacky University; 17. listopadu 12 77146 Olomouc Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials; Department of Physical Chemistry; Faculty of Science; Palacky University; 17. listopadu 12 77146 Olomouc Czech Republic
| | - Viktor Brabec
- Institute of Biophysics; Academy of Sciences of the Czech Republic, v.v.i.; Kralovopolska 135 612 65 Brno Czech Republic
| |
Collapse
|
17
|
Houston SA, Venkataramanan NS, Suvitha A, Wheate NJ. Loading of a Phenanthroline-Based Platinum(II) Complex onto the Surface of a Carbon Nanotube via π–π Stacking. Aust J Chem 2016. [DOI: 10.1071/ch16067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Stacking of the metal complex [(5,6-dimethyl-1,10-phenanthroline)(1S,2S-diaminocyclohexane)platinum(ii)]2+ (56MESS) onto the surface of two different fullerenes, a carbon nanotube (CNT), and a C60-buckyball was examined. The metal complex forms a supramolecular complex with multi-walled CNTs but not with buckyballs. Binding of 56MESS to the CNTs is highly efficient (90 %) but can be further stabilized by the addition of the surfactant, pluronic F-127, which resulted in a loading efficiency of 95 %. Molecular modelling shows that binding of 56MESS to the CNT is supported by the large surface area of the fullerene, whereas the more pronounced curvature and lack of a flat surface on the buckyball affects the ability of 56MESS to form bonds to its surface. The loading of 56MESS onto the CNT is via π–π stacking from the metal complex phenanthroline ligand and C–H···π bonding from the diaminocyclohexane ligand. 56MESS has 13 critical bonding points with the CNT, eight of which are π–π stacking bonds, but the metal complex forms only seven bonds with the buckyball. In addition, the loading of 56MESS onto the CNT results in a charge transfer of –0.111 eV; however, charge transfer is almost negligible for binding to the buckyball.
Collapse
|
18
|
Electrogenerated chemiluminescence reactions between the [Ru(bpy)3]2+ complex and PAMAM GX.0 dendrimers in an aqueous medium. J Inorg Biochem 2015; 151:18-25. [DOI: 10.1016/j.jinorgbio.2015.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/02/2015] [Accepted: 06/26/2015] [Indexed: 01/11/2023]
|
19
|
Abstract
Strategies to enhance, suppress, or qualitatively shape the immune response are of importance for diverse biomedical applications, such as the development of new vaccines, treatments for autoimmune diseases and allergies, strategies for regenerative medicine, and immunotherapies for cancer. However, the intricate cellular and molecular signals regulating the immune system are major hurdles to predictably manipulating the immune response and developing safe and effective therapies. To meet this challenge, biomaterials are being developed that control how, where, and when immune cells are stimulated in vivo, and that can finely control their differentiation in vitro. We review recent advances in the field of biomaterials for immunomodulation, focusing particularly on designing biomaterials to provide controlled immunostimulation, targeting drugs and vaccines to lymphoid organs, and serving as scaffolds to organize immune cells and emulate lymphoid tissues. These ongoing efforts highlight the many ways in which biomaterials can be brought to bear to engineer the immune system.
Collapse
Affiliation(s)
- Nathan A Hotaling
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine
- Parker H. Petit Institute for Bioengineering and Biosciences, and
| | - Li Tang
- Department of Materials Science and Engineering
- Department of Biological Engineering, and
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139
| | - Darrell J Irvine
- Department of Materials Science and Engineering
- Department of Biological Engineering, and
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| | - Julia E Babensee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine
- Parker H. Petit Institute for Bioengineering and Biosciences, and
- Center for Immunoengineering, Georgia Institute of Technology, Atlanta, Georgia 30332;
| |
Collapse
|
20
|
Callari M, Aldrich-Wright JR, de Souza PL, Stenzel MH. Polymers with platinum drugs and other macromolecular metal complexes for cancer treatment. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2014.05.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Sakae H, Nagatani H, Morita K, Imura H. Spectroelectrochemical characterization of dendrimer-porphyrin associates at polarized liquid|liquid interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:937-945. [PMID: 24397699 DOI: 10.1021/la404079m] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Molecular encapsulation of anionic porphyrins in NH2-terminated polyamidoamine (PAMAM) dendrimers and the interfacial behavior of the dendrimer-porphyrin associates were studied at the polarized water|1,2-dichloroethane (DCE) interface. Formation of the ion associates was significantly dependent on the pH condition and on generation of dendrimers. 5,10,15,20-Tetrakis(4-sulfonatophenyl)porphyrin (ZnTPPS(4-)) associated with the positively charged fourth-generation (G4) PAMAM dendrimer was highly stabilized in acidic aqueous solution without protolytic demetalation in a wide range of pH values (pH > 2). In contrast to the zinc(II) complex, the free base porphyrin (H2TPPS(4-)) was readily protonated under acidic conditions even in the presence of the dendrimers. In addition, the J-aggregates of diprotonated species, (H4TPPS(2-))n, were preferably formed on the dendrimer. The interfacial mechanism of the dendrimer-porphyrin associates was analyzed in detail by potential-modulated fluorescence (PMF) spectroscopy. PMF results indicated that the dendrimers incorporating porphyrin molecules were transferred across the positively polarized water|DCE interface via adsorption step, whereas the transfer responses of the porphyrin ions released from the dendrimers were observed at negatively polarized conditions. A negative shift of the transfer potential of porphyrin ions compared to the intrinsic transfer potential was apparently observed for each ion association system. The ion association stability between the dendrimer and the porphyrin molecules could be estimated from a negative shift of the transfer potential. ZnTPPS(4-) exhibited relatively strong interaction with the higher generation dendrimer, whereas H2TPPS(4-) was less effectively associated with the dendrimers.
Collapse
Affiliation(s)
- Hiroki Sakae
- Division of Material Sciences, Graduate School of Natural Science and Technology and ‡Faculty of Chemistry, Institute of Science and Engineering, Kanazawa University , Kakuma, Kanazawa 920-1192, Japan
| | | | | | | |
Collapse
|
22
|
Huxford-Phillips RC, Russell SR, Liu D, Lin W. Lipid-coated nanoscale coordination polymers for targeted cisplatin delivery. RSC Adv 2013; 3:14438-14443. [PMID: 24058727 PMCID: PMC3777664 DOI: 10.1039/c3ra42033g] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanoscale coordination polymers (NCPs) containing a Pt(IV) cisplatin prodrug, disuccinatocisplatin, were formed by a surfactant-templated synthesis and were shown to have a prodrug loading of 8.2 wt% and a diameter of ~133 nm by dynamic light scattering. These NCPs were stabilized by coating with a DOPC/cholesterol/DSPE-Peg2K lipid layer; a release profile in phosphate buffered saline showed an initial drug release of ~25% within the first hour and no more release observed up to 192 h. The NCP was rendered target-specific for sigma receptors by addition of an AA-DSPE-Peg2K conjugate (AA = anisamide) in the lipid formulation. The AA-containing NCP showed a statistically significant decrease in IC50 (inhibitory concentration, 50%) compared to the non-targeted NCP. Enhanced uptake of the AA-containing NCP was further supported by confocal microscopy and competitive binding assays.
Collapse
Affiliation(s)
| | | | | | - Wenbin Lin
- Department of Chemistry, CB#3290, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
23
|
Chiad K, Grill M, Baumgarten M, Klapper M, Müllen K. Guest Uptake by Rigid Polyphenylene Dendrimers Acting As a Unique Dendritic Box in Solution Proven by Isothermal Calorimetry. Macromolecules 2013. [DOI: 10.1021/ma3024848] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Khalid Chiad
- Max Planck Institute for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Matthias Grill
- Max Planck Institute for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Martin Baumgarten
- Max Planck Institute for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Markus Klapper
- Max Planck Institute for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg
10, 55128 Mainz, Germany
| |
Collapse
|
24
|
Wagstaff AJ, Brown SD, Holden MR, Craig GE, Plumb JA, Brown RE, Schreiter N, Chrzanowski W, Wheate NJ. Cisplatin drug delivery using gold-coated iron oxide nanoparticles for enhanced tumour targeting with external magnetic fields. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2012.05.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Wheate NJ. Nanoparticles: the future for platinum drugs or a research red herring? Nanomedicine (Lond) 2012; 7:1285-7. [DOI: 10.2217/nnm.12.108] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Nial J Wheate
- Faculty of Pharmacy, The University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
26
|
Kirkpatrick GJ, Plumb JA, Sutcliffe OB, Flint DJ, Wheate NJ. Evaluation of anionic half generation 3.5-6.5 poly(amidoamine) dendrimers as delivery vehicles for the active component of the anticancer drug cisplatin. J Inorg Biochem 2011; 105:1115-22. [PMID: 21704583 DOI: 10.1016/j.jinorgbio.2011.05.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 05/19/2011] [Accepted: 05/19/2011] [Indexed: 01/04/2023]
Abstract
Aquated cisplatin was added to half-generation PAMAM dendrimers and the resultant complexes were purified by centrifuge. The drug-dendrimer complexes were then characterised by 1-D and diffusion (1)H NMR and ICP-AES. The amount of drug bound was found to increase in proportion with dendrimer size: G3.5, 22 cis-{Pt(NH(3))(2)} molecules per dendrimer; G4.5, 37; G5.5, 54; and G6.5, 94, which represent only a fraction of the available binding sites on each dendrimer (68, 58, 42 and 37%, respectively). Drug release studies showed that some drug remains bound to the dendrimer even after prolonged incubation with 5'-GMP at temperatures of 60°C for over a week (percentage of drug released 18, 30, 35 and 63%, respectively). Attachment of the drug was found to decrease the radius of the dendrimers. Finally, the effect of the dendrimer on drug cytotoxicity was determined using in vitro assays with the A2780, A2780cis and A2780cp ovarian cancer cell lines. The free dendrimers display no cytotoxicity whilst the drug-dendrimer complexes showed moderate activity. In vivo activity was examined using an A2780 tumour xenograft. Cisplatin, at its maximum tolerated dose of 6 mg/kg, reduced tumour size by 33% compared to an untreated control group. The G6.5 cisplatin-dendrimer complex was administered at two doses (6 and 8 mg/kg equivalent of cisplatin). Both were well tolerated by the mice. The lower dose displayed comparable activity to cisplatin with a tumour volume reduction of 32%, but the higher dose was significantly more active than free cisplatin with a tumour reduction of 45%.
Collapse
Affiliation(s)
- Gordon J Kirkpatrick
- Strathclyde Institute of Pharmacy and Biomedical Sciences, John Arbuthnott Building, 161 Cathedral Street, Glasgow G4 0RE, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Brown SD, Nativo P, Smith JA, Stirling D, Edwards PR, Venugopal B, Flint DJ, Plumb JA, Graham D, Wheate NJ. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc 2010; 132:4678-84. [PMID: 20225865 PMCID: PMC3662397 DOI: 10.1021/ja908117a] [Citation(s) in RCA: 512] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
The platinum-based anticancer drugs cisplatin, carboplatin, and oxaliplatin are an important component of chemotherapy but are limited by severe dose-limiting side effects and the ability of tumors to develop resistance rapidly. These drugs can be improved through the use of drug-delivery vehicles that are able to target cancers passively or actively. In this study, we have tethered the active component of the anticancer drug oxaliplatin to a gold nanoparticle for improved drug delivery. Naked gold nanoparticles were functionalized with a thiolated poly(ethylene glycol) (PEG) monolayer capped with a carboxylate group. [Pt(1R,2R-diaminocyclohexane)(H2O)2]2NO3 was added to the PEG surface to yield a supramolecular complex with 280 (±20) drug molecules per nanoparticle. The platinum-tethered nanoparticles were examined for cytotoxicity, drug uptake, and localization in the A549 lung epithelial cancer cell line and the colon cancer cell lines HCT116, HCT15, HT29, and RKO. The platinum-tethered nanoparticles demonstrated as good as, or significantly better, cytotoxicity than oxaliplatin alone in all of the cell lines and an unusual ability to penetrate the nucleus in the lung cancer cells.
Collapse
Affiliation(s)
- Sarah D Brown
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, G1 1XL Glasgow, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Discrepancy between in vitro and in vivo antitumor effect of a new platinum(II) metallointercalator. Invest New Drugs 2010; 29:1164-76. [DOI: 10.1007/s10637-010-9461-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 05/14/2010] [Indexed: 12/31/2022]
|
29
|
Barry NPE, Zava O, Furrer J, Dyson PJ, Therrien B. Anticancer activity of opened arene ruthenium metalla-assemblies. Dalton Trans 2010; 39:5272-7. [DOI: 10.1039/c001521k] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|