1
|
Sharma G, Jayasinghe-Arachchige VM, Hu Q, Schenk G, Prabhakar R. Effect of Chemically Distinct Substrates on the Mechanism and Reactivity of a Highly Promiscuous Metallohydrolase. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04847] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Gaurav Sharma
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | | | - Qiaoyu Hu
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
2
|
Hu Q, Jayasinghe‐Arachchige VM, Sharma G, Serafim LF, Paul TJ, Prabhakar R. Mechanisms of peptide and phosphoester hydrolysis catalyzed by two promiscuous metalloenzymes (insulin degrading enzyme and glycerophosphodiesterase) and their synthetic analogues. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Qiaoyu Hu
- Department of Chemistry, University of Miami Coral Gables Florida
| | | | - Gaurav Sharma
- Department of Chemistry, University of Miami Coral Gables Florida
| | | | - Thomas J. Paul
- Department of Chemistry, University of Miami Coral Gables Florida
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami Coral Gables Florida
| |
Collapse
|
3
|
Paul TJ, Schenk G, Prabhakar R. Formation of Catalytically Active Binuclear Center of Glycerophosphodiesterase: A Molecular Dynamics Study. J Phys Chem B 2018; 122:5797-5808. [DOI: 10.1021/acs.jpcb.8b02046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas J. Paul
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
4
|
Blackman AG, Gahan LR. Metal-coordinated Hydroxide as a Nucleophile: a Brief History. Z Anorg Allg Chem 2018. [DOI: 10.1002/zaac.201800045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Allan G. Blackman
- Centre for Biomedical and Chemical Sciences; School of Science; Auckland University of Technology; Private Bag 92006 Auckland New Zealand
| | - Lawrence R. Gahan
- School of Chemistry and Molecular Biosciences; The University of Queensland; Brisbane Queensland Australia
| |
Collapse
|
5
|
Pedroso MM, Ely F, Carpenter MC, Mitić N, Gahan LR, Ollis DL, Wilcox DE, Schenk G. Mechanistic Insight from Calorimetric Measurements of the Assembly of the Binuclear Metal Active Site of Glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes. Biochemistry 2017; 56:3328-3336. [DOI: 10.1021/acs.biochem.6b01200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marcelo M. Pedroso
- School
of Chemistry and Molecular BioSciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Fernanda Ely
- School
of Chemistry and Molecular BioSciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Margaret C. Carpenter
- Department
of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Nataša Mitić
- Department
of Chemistry, National University of Ireland—Maynooth, Maynooth, County Kildare, Ireland
| | - Lawrence R. Gahan
- School
of Chemistry and Molecular BioSciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - David L. Ollis
- Research
School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Dean E. Wilcox
- Department
of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Gerhard Schenk
- School
of Chemistry and Molecular BioSciences, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
6
|
Schenk G, Mateen I, Ng TK, Pedroso MM, Mitić N, Jafelicci M, Marques RF, Gahan LR, Ollis DL. Organophosphate-degrading metallohydrolases: Structure and function of potent catalysts for applications in bioremediation. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.03.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Mendes LL, Englert D, Fernandes C, Gahan LR, Schenk G, Horn A. Metallohydrolase biomimetics with catalytic and structural flexibility. Dalton Trans 2016; 45:18510-18521. [DOI: 10.1039/c6dt03200a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The phosphatase activity of zinc complexes containing six- and seven-dentate ligands was evaluated through kinetic and31P NMR studies.
Collapse
Affiliation(s)
- Luisa L. Mendes
- Laboratório de Ciências Químicas
- Universidade Estadual do Norte Fluminense
- Campos dos Goytacazes/RJ
- Brazil
| | - Daniel Englert
- Anorganisch-Chemisches Institut
- Universität Heidelberg
- 69120 Heidelberg
- Germany
| | - Christiane Fernandes
- Laboratório de Ciências Químicas
- Universidade Estadual do Norte Fluminense
- Campos dos Goytacazes/RJ
- Brazil
| | - Lawrence R. Gahan
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- Brisbane
- Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- Brisbane
- Australia
| | - Adolfo Horn
- Laboratório de Ciências Químicas
- Universidade Estadual do Norte Fluminense
- Campos dos Goytacazes/RJ
- Brazil
| |
Collapse
|
8
|
Use of magnetic circular dichroism to study dinuclear metallohydrolases and the corresponding biomimetics. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:393-415. [DOI: 10.1007/s00249-015-1053-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 05/30/2015] [Accepted: 06/07/2015] [Indexed: 11/26/2022]
|
9
|
Myers CL, Ireland RG, Garrett TA, Brown ED. Characterization of Wall Teichoic Acid Degradation by the Bacteriophage ϕ29 Appendage Protein GP12 Using Synthetic Substrate Analogs. J Biol Chem 2015; 290:19133-45. [PMID: 26085106 DOI: 10.1074/jbc.m115.662866] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Indexed: 11/06/2022] Open
Abstract
The genetics and enzymology of the biosynthesis of wall teichoic acid have been the extensively studied, however, comparatively little is known regarding the enzymatic degradation of this biological polymer. The GP12 protein from the Bacillus subtilis bacteriophage ϕ29 has been implicated as a wall teichoic acid hydrolase. We have studied the wall teichoic acid hydrolase activity of pure, recombinant GP12 using chemically defined wall teichoic acid analogs. The GP12 protein had potent wall teichoic acid hydrolytic activity in vitro and demonstrated ∼13-fold kinetic preference for glycosylated poly(glycerol phosphate) teichoic acid compared with non-glycosylated. Product distribution patterns suggested that the degradation of glycosylated polymers proceeded from the hydroxyl terminus of the polymer, whereas hydrolysis occurred at random sites in the non-glycosylated polymer. In addition, we present evidence that the GP12 protein possesses both phosphodiesterase and phosphomonoesterase activities.
Collapse
Affiliation(s)
- Cullen L Myers
- From the Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada and
| | - Ronald G Ireland
- From the Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada and
| | - Teresa A Garrett
- the Department of Chemistry, Vassar College, Poughkeepsie, New York 12604
| | - Eric D Brown
- From the Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada and
| |
Collapse
|
10
|
Mitić N, Miraula M, Selleck C, Hadler KS, Uribe E, Pedroso MM, Schenk G. Catalytic mechanisms of metallohydrolases containing two metal ions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 97:49-81. [PMID: 25458355 DOI: 10.1016/bs.apcsb.2014.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At least one-third of enzymes contain metal ions as cofactors necessary for a diverse range of catalytic activities. In the case of polymetallic enzymes (i.e., two or more metal ions involved in catalysis), the presence of two (or more) closely spaced metal ions gives an additional advantage in terms of (i) charge delocalisation, (ii) smaller activation barriers, (iii) the ability to bind larger substrates, (iv) enhanced electrostatic activation of substrates, and (v) decreased transition-state energies. Among this group of proteins, enzymes that catalyze the hydrolysis of ester and amide bonds form a very prominent family, the metallohydrolases. These enzymes are involved in a multitude of biological functions, and an increasing number of them gain attention for translational research in medicine and biotechnology. Their functional versatility and catalytic proficiency are largely due to the presence of metal ions in their active sites. In this chapter, we thus discuss and compare the reaction mechanisms of several closely related enzymes with a view to highlighting the functional diversity bestowed upon them by their metal ion cofactors.
Collapse
Affiliation(s)
- Nataša Mitić
- Department of Chemistry, National University of Ireland, Maynooth, Maynooth, Co. Kildare, Ireland.
| | - Manfredi Miraula
- Department of Chemistry, National University of Ireland, Maynooth, Maynooth, Co. Kildare, Ireland; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Christopher Selleck
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kieran S Hadler
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Elena Uribe
- Department of Biochemistry and Molecular Biology, University of Concepción, Concepción, Chile
| | - Marcelo M Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
11
|
Phelan EK, Miraula M, Selleck C, Ollis DL, Schenk G, Mitić N. Metallo-β-Lactamases: A Major Threat to Human Health. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ajmb.2014.43011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Daumann LJ, Schenk G, Ollis DL, Gahan LR. Spectroscopic and mechanistic studies of dinuclear metallohydrolases and their biomimetic complexes. Dalton Trans 2013; 43:910-28. [PMID: 24135968 DOI: 10.1039/c3dt52287c] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An enhanced understanding of the metal ion binding and active site structural features of phosphoesterases such as the glycerophosphodiesterase from Enterobacter aerogenes (GpdQ), and the organophosphate degrading agent from Agrobacterium radiobacter (OpdA) have important consequences for potential applications. Coupled with investigations of the metalloenzymes, programs of study to synthesise and characterise model complexes based on these metalloenzymes can add to our understanding of structure and function of the enzymes themselves. This review summarises some of our work and illustrates the significance and contributions of model studies to knowledge in the area.
Collapse
Affiliation(s)
- Lena J Daumann
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | |
Collapse
|
13
|
Daumann LJ, Comba P, Larrabee JA, Schenk G, Stranger R, Cavigliasso G, Gahan LR. Synthesis, Magnetic Properties, and Phosphoesterase Activity of Dinuclear Cobalt(II) Complexes. Inorg Chem 2013; 52:2029-43. [DOI: 10.1021/ic302418x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Lena J. Daumann
- School of
Chemistry and Molecular Biosciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Peter Comba
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld
270, 69120 Heidelberg, Germany
| | - James A. Larrabee
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, United States
| | - Gerhard Schenk
- School of
Chemistry and Molecular Biosciences, The University of Queensland, Brisbane QLD 4072, Australia
- Department of Chemistry, National University of Ireland—Maynooth, Maynooth,
Co. Kildare, Ireland
| | - Robert Stranger
- Research School of Chemistry, Australian National University, Canberra 0200, Australia
| | - German Cavigliasso
- Research School of Chemistry, Australian National University, Canberra 0200, Australia
| | - Lawrence R. Gahan
- School of
Chemistry and Molecular Biosciences, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
14
|
Daumann LJ, Marty L, Schenk G, Gahan LR. Asymmetric zinc(ii) complexes as functional and structural models for phosphoesterases. Dalton Trans 2013; 42:9574-84. [DOI: 10.1039/c3dt50514f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Schenk G, Mitić N, Gahan LR, Ollis DL, McGeary RP, Guddat LW. Binuclear metallohydrolases: complex mechanistic strategies for a simple chemical reaction. Acc Chem Res 2012; 45:1593-603. [PMID: 22698580 DOI: 10.1021/ar300067g] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Binuclear metallohydrolases are a large family of enzymes that require two closely spaced transition metal ions to carry out a plethora of hydrolytic reactions. Representatives include purple acid phosphatases (PAPs), enzymes that play a role in bone metabolism and are the only member of this family with a heterovalent binuclear center in the active form (Fe(3+)-M(2+), M = Fe, Zn, Mn). Other members of this family are urease, which contains a di-Ni(2+) center and catalyzes the breakdown of urea, arginase, which contains a di-Mn(2+) center and catalyzes the final step in the urea cycle, and the metallo-β-lactamases, which contain a di-Zn(2+) center and are virulence factors contributing to the spread of antibiotic-resistant pathogens. Binuclear metallohydrolases catalyze numerous vital reactions and are potential targets of drugs against a wide variety of human disorders including osteoporosis, various cancers, antibiotic resistance, and erectile dysfunctions. These enzymes also tend to catalyze more than one reaction. An example is an organophosphate (OP)-degrading enzyme from Enterobacter aerogenes (GpdQ). Although GpdQ is part of a pathway that is used by bacteria to degrade glycerolphosphoesters, it hydrolyzes a variety of other phosphodiesters and displays low levels of activity against phosphomono- and triesters. Such a promiscuous nature may have assisted the apparent recent evolution of some binuclear metallohydrolases to deal with situations created by human intervention such as OP pesticides in the environment. OP pesticides were first used approximately 70 years ago, and therefore the enzymes that bacteria use to degrade them must have evolved very quickly on the evolutionary time scale. The promiscuous nature of enzymes such as GpdQ makes them ideal candidates for the application of directed evolution to produce new enzymes that can be used in bioremediation and against chemical warfare. In this Account, we review the mechanisms employed by binuclear metallohydrolases and use PAP, the OP-degrading enzyme from Agrobacterium radiobacter (OPDA), and GpdQ as representative systems because they illustrate both the diversity and similarity of the reactions catalyzed by this family of enzymes. The majority of binuclear metallohydrolases utilize metal ion-activated water molecules as nucleophiles to initiate hydrolysis, while some, such as alkaline phosphatase, employ an intrinsic polar amino acid. Here we only focus on catalytic strategies applied by the former group.
Collapse
Affiliation(s)
- Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Chemistry, National University of Ireland—Maynooth, Maynooth, County Kildare, Ireland
| | - Nataša Mitić
- Department of Chemistry, National University of Ireland—Maynooth, Maynooth, County Kildare, Ireland
| | - Lawrence R. Gahan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David L. Ollis
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Ross P. McGeary
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Luke W. Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
16
|
Daumann LJ, Gahan LR, Comba P, Schenk G. Cadmium(II) Complexes: Mimics of Organophosphate Pesticide Degrading Enzymes and Metallo-β-lactamases. Inorg Chem 2012; 51:7669-81. [DOI: 10.1021/ic300687y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lena J. Daumann
- School of
Chemistry and Molecular
Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lawrence. R. Gahan
- School of
Chemistry and Molecular
Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter Comba
- Anorganisch-Chemisches Institut, Universitat Heidelberg, Im Neuenheimer Feld 270, 69120
Heidelberg, Germany
| | - Gerhard Schenk
- School of
Chemistry and Molecular
Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Department
of Chemistry, National University of Ireland, Maynooth, County Kildare,
Ireland
| |
Collapse
|
17
|
Daumann LJ, McCarthy BY, Hadler KS, Murray TP, Gahan LR, Larrabee JA, Ollis DL, Schenk G. Promiscuity comes at a price: catalytic versatility vs efficiency in different metal ion derivatives of the potential bioremediator GpdQ. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:425-32. [PMID: 22366468 DOI: 10.1016/j.bbapap.2012.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 01/26/2012] [Accepted: 02/03/2012] [Indexed: 10/28/2022]
Abstract
The glycerophosphodiesterase from Enterobacter aerogenes (GpdQ) is a highly promiscuous dinuclear metallohydrolase with respect to both substrate specificity and metal ion composition. While this promiscuity may adversely affect the enzyme's catalytic efficiency its ability to hydrolyse some organophosphates (OPs) and by-products of OP degradation have turned GpdQ into a promising candidate for bioremedial applications. Here, we investigated both metal ion binding and the effect of the metal ion composition on catalysis. The prevalent in vivo metal ion composition for GpdQ is proposed to be of the type Fe(II)Zn(II), a reflection of natural abundance rather than catalytic optimisation. The Fe(II) appears to have lower binding affinity than other divalent metal ions, and the catalytic efficiency of this mixed metal center is considerably smaller than that of Mn(II), Co(II) or Cd(II)-containing derivatives of GpdQ. Interestingly, metal ion replacements do not only affect catalytic efficiency but also the optimal pH range for the reaction, suggesting that different metal ion combinations may employ different mechanistic strategies. These metal ion-triggered modulations are likely to be mediated via an extensive hydrogen bond network that links the two metal ion binding sites via residues in the substrate binding pocket. The observed functional diversity may be the cause for the modest catalytic efficiency of wild-type GpdQ but may also be essential to enable the enzyme to evolve rapidly to alter substrate specificity and enhance k(cat) values, as has recently been demonstrated in a directed evolution experiment. This article is part of a Special Issue entitled: Chemistry and mechanism of phosphatases, diesterases and triesterases.
Collapse
Affiliation(s)
- Lena J Daumann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Electronic and geometric structures of the organophosphate-degrading enzyme from Agrobacterium radiobacter (OpdA). J Biol Inorg Chem 2011; 16:777-87. [PMID: 21487938 DOI: 10.1007/s00775-011-0779-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
Abstract
The organophosphate-degrading enzyme from Agrobacterium radiobacter (OpdA) is a highly efficient catalyst for the degradation of pesticides and some nerve agents such as sarin. OpdA requires two metal ions for catalytic activity, and hydrolysis is initiated by a nucleophilic hydroxide that is bound to one of these metal ions. The precise location of this nucleophile has been contentious, with both a terminal and a metal-ion-bridging hydroxide as likely candidates. Here, we employed magnetic circular dichroism to probe the electronic and geometric structures of the Co(II)-reconstituted dinuclear metal center in OpdA. In the resting state the metal ion in the more secluded α site is five-coordinate, whereas the Co(II) in the solvent-exposed β site is predominantly six-coordinate with two terminal water ligands. Addition of the slow substrate diethyl 4-methoxyphenyl phosphate does not affect the α site greatly but lowers the coordination number of the β site to five. A reduction in the exchange coupling constant indicates that substrate binding also triggers a shift of the μ-hydroxide into a pseudoterminal position in the coordination sphere of either the α or the β metal ion. Mechanistic implications of these observations are discussed.
Collapse
|
19
|
Hadler KS, Mitić N, Yip SHC, Gahan LR, Ollis DL, Schenk G, Larrabee JA. Electronic Structure Analysis of the Dinuclear Metal Center in the Bioremediator Glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes. Inorg Chem 2010; 49:2727-34. [DOI: 10.1021/ic901950c] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kieran S. Hadler
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Nataša Mitić
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Sylvia Hsu-Chen Yip
- Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | - Lawrence R Gahan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - David L. Ollis
- Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - James A. Larrabee
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753
| |
Collapse
|