1
|
Delpe Acharige AMDS, Brennan MPC, Lauder K, McMahon F, Odebunmi AO, Durrant MC. Computational insights into the inhibition of β-haematin crystallization by antimalarial drugs. Dalton Trans 2018; 47:15364-15381. [PMID: 30298161 DOI: 10.1039/c8dt03369b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During the red blood cell phase of their life cycle, malaria parasites digest their host's haemoglobin, with concomitant release of potentially toxic iron(iii) protoporphyrin IX (FePPIX). The parasites' strategy for detoxification of FePPIX involves its crystallization to haemozoin, such that the build-up of free haem in solution is avoided. Antimalarial drugs of both historical importance and current clinical use are known to be capable of disrupting the growth of crystals of β-haematin, which is the synthetic equivalent of haemozoin. Hence, the disruption of haemozoin crystal growth is implicated as a possible mode of action of such drugs. However, the details of β-haematin crystal poisoning at the molecular level have yet to be fully elucidated. In this study, we have used a combination of density functional theory (DFT) and molecular modelling to examine the possible modes of action of ten different antimalarial drugs, including quinine-type aliphatic alcohols, amodiaquine-type phenols, and chloroquine-type aliphatic diamines. The DFT calculations indicate that each of the drugs can form at least one molecular complex with FePPIX. These complexes have 1 : 1 or 2 : 1 FePPIX : drug stoichiometries and all of them incorporate Fe-O bonds, formed either by direct coordination of a zwitterionic form of the drug, or by deprotonation of water. Most of the drugs can form more than one such complex. We have used the DFT model structures to explore the possible formation of a monolayer of each drug-haem complex on four of the β-haematin crystal faces. In all cases, the drug complexes can form a monolayer on the fast-growing {001} and {011} faces, but not on the slower growing {010} and {100} faces. Additional modelling of the chloroquine and quinidine complexes shows that individual molecules of these species can also obstruct the growth of new layers on other crystal faces. The implications of these observations for antimalarial drug development are discussed.
Collapse
Affiliation(s)
- Anjana M D S Delpe Acharige
- Faculty of Health and Life Sciences, Northumbria University, Ellison Building, Newcastle-upon-Tyne NE2 8ST, UK.
| | | | | | | | | | | |
Collapse
|
2
|
Valverde EA, Romero AH, Acosta ME, Gamboa N, Henriques G, Rodrigues JR, Ciangherotti C, López SE. Synthesis, β-hematin inhibition studies and antimalarial evaluation of new dehydroxy isoquine derivatives against Plasmodium berghei: A promising antimalarial agent. Eur J Med Chem 2018; 148:498-506. [DOI: 10.1016/j.ejmech.2017.10.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 10/18/2022]
|
3
|
Wicht KJ, Combrinck JM, Smith PJ, Hunter R, Egan TJ. Identification and SAR Evaluation of Hemozoin-Inhibiting Benzamides Active against Plasmodium falciparum. J Med Chem 2016; 59:6512-30. [PMID: 27299916 DOI: 10.1021/acs.jmedchem.6b00719] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Quinoline antimalarials target hemozoin formation causing a cytotoxic accumulation of ferriprotoporphyrin IX (Fe(III)PPIX). Well-developed SAR models exist for β-hematin inhibition, parasite activity, and cellular mechanisms for this compound class, but no comparably detailed investigations exist for other hemozoin inhibiting chemotypes. Here, benzamide analogues based on previous HTS hits have been purchased or synthesized. Only derivatives containing an electron deficient aromatic ring and capable of adopting flat conformations, optimal for π-π interactions with Fe(III)PPIX, inhibited β-hematin formation. The two most potent analogues showed nanomolar parasite activity, with little CQ cross-resistance, low cytotoxicity, and high in vitro microsomal stability. Selected analogues inhibited hemozoin formation in Plasmodium falciparum causing high levels of free heme. In contrast to quinolines, introduction of amine side chains did not lead to benzamide accumulation in the parasite. These data reveal complex relationships between heme binding, free heme levels, cellular accumulation, and in vitro activity of potential novel antimalarials.
Collapse
Affiliation(s)
- Kathryn J Wicht
- Department of Chemistry, University of Cape Town , Rondebosch 7701, South Africa
| | - Jill M Combrinck
- Department of Chemistry, University of Cape Town , Rondebosch 7701, South Africa.,Division of Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town , Observatory 7925, South Africa
| | - Peter J Smith
- Division of Pharmacology, Department of Medicine, Faculty of Health Sciences, University of Cape Town , Observatory 7925, South Africa
| | - Roger Hunter
- Department of Chemistry, University of Cape Town , Rondebosch 7701, South Africa
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town , Rondebosch 7701, South Africa
| |
Collapse
|
4
|
Gildenhuys J, Sammy CJ, Müller R, Streltsov VA, le Roex T, Kuter D, de Villiers KA. Alkoxide coordination of iron(III) protoporphyrin IX by antimalarial quinoline methanols: a key interaction observed in the solid-state and solution. Dalton Trans 2015; 44:16767-77. [PMID: 26335948 DOI: 10.1039/c5dt02671g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The quinoline methanol antimalarial drug mefloquine is a structural analogue of the Cinchona alkaloids, quinine and quinidine. We have elucidated the single crystal X-ray diffraction structure of the complexes formed between racemic erythro mefloquine and ferriprotoporphyrin IX (Fe(iii)PPIX) and show that alkoxide coordination is a key interaction in the solid-state. Mass spectrometry confirms the existence of coordination complexes of quinine, quinidine and mefloquine to Fe(iii)PPIX in acetonitrile. The length of the iron(iii)-O bond in the quinine and quinidine complexes as determined by Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy unequivocally confirms that coordination of the quinoline methanol compounds to Fe(iii)PPIX occurs in non-aqueous aprotic solution via their benzylic alkoxide functional group. UV-visible spectrophotometric titrations of the low-spin bis-pyridyl-Fe(iii)PPIX complex with each of the quinoline methanol compounds results in the displacement of a single pyridine molecule and subsequent formation of a six-coordinate pyridine-Fe(iii)PPIX-drug complex. We propose that formation of the drug-Fe(iii)PPIX coordination complexes is favoured in a non-aqueous environment, such as that found in lipid bodies or membranes in the malaria parasite, and that their existence may contribute to the mechanism of haemozoin inhibition or other toxicity effects that lead ultimately to parasite death. In either case, coordination is a key interaction to be considered in the design of novel antimalarial drug candidates.
Collapse
Affiliation(s)
- Johandie Gildenhuys
- Stellenbosch University, Department of Chemistry and Polymer Science, Private Bag X1, Matieland, 7602, Stellenbosch, South Africa.
| | | | | | | | | | | | | |
Collapse
|
5
|
Romero AH, Acosta ME, Gamboa N, Charris JE, Salazar J, López SE. Synthesis, β-hematin inhibition studies and antimalarial evaluation of dehydroxy isotebuquine derivatives against Plasmodium berghei. Bioorg Med Chem 2015; 23:4755-4762. [DOI: 10.1016/j.bmc.2015.05.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 05/15/2015] [Accepted: 05/24/2015] [Indexed: 11/29/2022]
|
6
|
N10,N11-di-alkylamine indolo[3,2-b]quinolines as hemozoin inhibitors: Design, synthesis and antiplasmodial activity. Bioorg Med Chem 2015; 23:1530-9. [DOI: 10.1016/j.bmc.2015.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/02/2015] [Accepted: 02/04/2015] [Indexed: 11/20/2022]
|
7
|
Silva AF, de Souza Silva L, Alves FL, Der TorossianTorres M, de SáPinheiro AA, Miranda A, LaraCapurro M, Oliveira VX. Effects of the angiotensin II Ala-scan analogs in erythrocytic cycle of Plasmodium falciparum (in vitro) and Plasmodium gallinaceum (ex vivo). Exp Parasitol 2015; 153:1-7. [PMID: 25720804 DOI: 10.1016/j.exppara.2015.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 01/26/2015] [Accepted: 02/08/2015] [Indexed: 01/21/2023]
Abstract
The anti-plasmodium activity of angiotensin II and its analogs have been described in different plasmodium species. Here we synthesized angiotensin II Ala-scan analogs to verify peptide-parasite invasion preservation with residue replacements. The analogs were synthesized by 9-fluorenylmethoxycarbonyl (Fmoc) and tert-butyloxycarbonyl (t-Boc) solid phase methods, purified by liquid chromatography and characterized by mass spectrometry. The results obtained in Plasmodium falciparum assays indicated that all analogs presented some influence in parasite invasion, except [Ala(4)]-Ang II (18% of anti-plasmodium activity) that was not statistically different from control. Although [Ala(8)]-Ang II presented a lower biological activity (20%), it was statistically different from control. The most relevant finding was that [Ala(5)]-Ang II preserved activity (45%) relative to Ang II (47%). In the results of Plasmodium gallinaceum assays all analogs were not statistically different from control, except [Ala(6)]-Ang II, which was able to reduce the parasitemia about 49%. This approach provides insight for understanding the importance of each amino acid on the native Ang II sequence and provides a new direction for the design of potential chemotherapeutic agents without pressor activity.
Collapse
Affiliation(s)
- Adriana Farias Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Leandro de Souza Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Flávio Lopes Alves
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Ana Acacia de SáPinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Antonio Miranda
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Margareth LaraCapurro
- Departamento de Parasitologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vani Xavier Oliveira
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil.
| |
Collapse
|
8
|
Torres MDT, Silva AF, de Souza Silva L, de Sá Pinheiro AA, Oliveira VXJ. Angiotensin II restricted analogs with biological activity in the erythrocytic cycle of Plasmodium falciparum. J Pept Sci 2014; 21:24-8. [DOI: 10.1002/psc.2714] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/14/2014] [Accepted: 10/17/2014] [Indexed: 01/03/2023]
Affiliation(s)
| | - Adriana Farias Silva
- Centro de Ciências Naturais e Humanas; Universidade Federal do ABC; Santo André SP Brazil
| | - Leandro de Souza Silva
- Instituto de Biofísica Carlos Chagas; Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ Brazil
| | - Ana Acácia de Sá Pinheiro
- Instituto de Biofísica Carlos Chagas; Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ Brazil
| | | |
Collapse
|
9
|
|
10
|
An atomic scale mechanism for the antimalarial action of chloroquine from density functional theory calculations. TRANSIT METAL CHEM 2014. [DOI: 10.1007/s11243-014-9868-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Marcelo Der Torossian T, Silva AF, Alves FL, Capurro ML, Miranda A, Vani Xavier O. Highly Potential Antiplasmodial Restricted Peptides. Chem Biol Drug Des 2014; 85:163-71. [DOI: 10.1111/cbdd.12354] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/01/2014] [Accepted: 04/29/2014] [Indexed: 12/17/2022]
Affiliation(s)
| | - Adriana F. Silva
- Centro de Ciências Naturais e Humanas; Universidade Federal do ABC; Santo André Brazil
| | - Flávio L. Alves
- Departamento de Biofísica; Universidade Federal de São Paulo; São Paulo Brazil
| | - Margareth L. Capurro
- Instituto de Ciências Biomédicas II; Universidade de São Paulo; São Paulo Brazil
| | - Antonio Miranda
- Departamento de Biofísica; Universidade Federal de São Paulo; São Paulo Brazil
| | - Oliveira Vani Xavier
- Centro de Ciências Naturais e Humanas; Universidade Federal do ABC; Santo André Brazil
| |
Collapse
|
12
|
Silva AF, Bastos EL, Torres MDT, Costa-da-Silva AL, Ioshino RS, Capurro ML, Alves FL, Miranda A, de Freitas Fischer Vieira R, Oliveira VX. Antiplasmodial activity study of angiotensin II via Ala scan analogs. J Pept Sci 2014; 20:640-8. [DOI: 10.1002/psc.2641] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 03/20/2014] [Accepted: 03/25/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Adriana Farias Silva
- Centro de Ciências Naturais e Humanas; Universidade Federal do ABC; Santo André SP Brazil
| | - Erick Leite Bastos
- Departamento de Química Fundamental, Instituto de Química; Universidade de São Paulo; São Paulo SP Brazil
| | | | - André Luis Costa-da-Silva
- Departamento de Parasitologia, Instituto de Ciências Biomédicas; Universidade de São Paulo; São Paulo SP Brazil
| | - Rafaella Sayuri Ioshino
- Departamento de Parasitologia, Instituto de Ciências Biomédicas; Universidade de São Paulo; São Paulo SP Brazil
| | - Margareth Lara Capurro
- Departamento de Parasitologia, Instituto de Ciências Biomédicas; Universidade de São Paulo; São Paulo SP Brazil
| | - Flávio Lopes Alves
- Departamento de Biofísica; Universidade Federal de São Paulo; São Paulo SP Brazil
| | - Antonio Miranda
- Departamento de Biofísica; Universidade Federal de São Paulo; São Paulo SP Brazil
| | | | - Vani Xavier Oliveira
- Centro de Ciências Naturais e Humanas; Universidade Federal do ABC; Santo André SP Brazil
| |
Collapse
|
13
|
Paulo A, Figueiras M, Machado M, Charneira C, Lavrado J, Santos SA, Lopes D, Gut J, Rosenthal PJ, Nogueira F, Moreira R. Bis-alkylamine Indolo[3,2-b]quinolines as Hemozoin Ligands: Implications for Antimalarial Cytostatic and Cytocidal Activities. J Med Chem 2014; 57:3295-313. [DOI: 10.1021/jm500075d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alexandra Paulo
- Instituto
de Investigação do Medicamento (iMed.ULisboa), Faculdade
de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Marta Figueiras
- Instituto
de Investigação do Medicamento (iMed.ULisboa), Faculdade
de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Marta Machado
- UEI
Malaria, Centro da Malária e Doenças Tropicais, IHMT, Universidade Nova de Lisboa, Rua da Junqueira, 100, P-1349-008 Lisboa, Portugal
| | - Catarina Charneira
- Instituto
de Investigação do Medicamento (iMed.ULisboa), Faculdade
de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - João Lavrado
- Instituto
de Investigação do Medicamento (iMed.ULisboa), Faculdade
de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Sofia A. Santos
- Instituto
de Investigação do Medicamento (iMed.ULisboa), Faculdade
de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Dinora Lopes
- UEI
Malaria, Centro da Malária e Doenças Tropicais, IHMT, Universidade Nova de Lisboa, Rua da Junqueira, 100, P-1349-008 Lisboa, Portugal
| | - Jiri Gut
- Department
of Medicine, San Francisco General Hospital, University of California, San Francisco, Box 0811, San Francisco, California 94143, United States
| | - Philip J. Rosenthal
- Department
of Medicine, San Francisco General Hospital, University of California, San Francisco, Box 0811, San Francisco, California 94143, United States
| | - Fátima Nogueira
- UEI
Malaria, Centro da Malária e Doenças Tropicais, IHMT, Universidade Nova de Lisboa, Rua da Junqueira, 100, P-1349-008 Lisboa, Portugal
| | - Rui Moreira
- Instituto
de Investigação do Medicamento (iMed.ULisboa), Faculdade
de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
14
|
Der Torossian Torres M, Silva AF, Alves FL, Capurro ML, Miranda A, Oliveira Junior VX. The Importance of Ring Size and Position for the Antiplasmodial Activity of Angiotensin II Restricted Analogs. Int J Pept Res Ther 2014. [DOI: 10.1007/s10989-014-9392-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Kuter D, Benjamin SJ, Egan TJ. Multiple spectroscopic and magnetic techniques show that chloroquine induces formation of the μ-oxo dimer of ferriprotoporphyrin IX. J Inorg Biochem 2014; 133:40-9. [PMID: 24480793 DOI: 10.1016/j.jinorgbio.2014.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 01/03/2014] [Accepted: 01/07/2014] [Indexed: 11/28/2022]
Abstract
Interaction of the antimalarial chloroquine (CQ) with ferriprotoporphyrin IX, Fe(III)PPIX, was investigated in aqueous solution (pH7.4) and as a precipitate from aqueous medium at pH5.0. In solution, spectrophotometric titrations indicated strong association (logKobs 13.3±0.2) and a Job plot gave a stoichiometry of 1:2 CQ:Fe(III)PPIX. UV-visible absorbance and magnetic circular dichroism spectra of the complex were compared to various Fe(III)PPIX species. Close similarity to the spectra of the μ-oxo dimer, μ-[Fe(III)PPIX]2O, was revealed. The induction of this species by CQ was confirmed by magnetic susceptibility measurements using the Evans NMR method. The observed low-magnetic moment (2.25±0.02 μB) could only be attributed to antiferromagnetically coupled Fe(III) centers. The value was comparable to that of μ-[Fe(III)PPIX]2O (2.0±0.1 μB). In the solid-state, mass spectrometry confirmed the presence of CQ in the complex. Dissolution of this solid in aqueous solution (pH7.4) resulted in a solution with a UV-visible spectrum consistent with the same 1:2 stoichiometry observed in the Job plot. Magnetic susceptibility measurements made on the solid using an Evans balance produced a magnetic moment (2.3±0.1 μB) consistent with that in solution. Diffusion coefficients of CQ and its complex with Fe(III)PPIX were measured in aqueous solution (3.3±0.3 and 0.6±0.2×10(-10) m(2)·s(-1), respectively). The latter was used in conjunction with an empirical relationship between diffusion coefficient and molar volume to estimate the degree of aggregation. The findings suggest the formation of a 2:4 CQ:Fe(III)PPIX complex in aqueous solution at pH7.4.
Collapse
Affiliation(s)
- David Kuter
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| | - Stefan J Benjamin
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa.
| |
Collapse
|
16
|
Durrant MC. A computational study of ligand binding affinities in iron(iii) porphine and protoporphyrin IX complexes. Dalton Trans 2014; 43:9754-65. [DOI: 10.1039/c4dt01103a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the context of antimalarial drug development, density functional theory has been used to model the interactions between a diverse set of 31 small ligands and the iron(iii) centre of ferriprotoporphyrin IX, as well as key events in the crystallization of this molecule by the malaria parasite.
Collapse
Affiliation(s)
- Marcus C. Durrant
- Faculty of Health and Life Sciences
- Northumbria University
- Newcastle-upon-Tyne NE1 8ST, UK
| |
Collapse
|
17
|
Structure–activity relationships for ferriprotoporphyrin IX association and β-hematin inhibition by 4-aminoquinolines using experimental and ab initio methods. Bioorg Med Chem 2013; 21:3738-48. [DOI: 10.1016/j.bmc.2013.04.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/03/2013] [Accepted: 04/12/2013] [Indexed: 11/20/2022]
|
18
|
Gorka AP, de Dios A, Roepe PD. Quinoline drug-heme interactions and implications for antimalarial cytostatic versus cytocidal activities. J Med Chem 2013; 56:5231-46. [PMID: 23586757 DOI: 10.1021/jm400282d] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Historically, the most successful molecular target for antimalarial drugs has been heme biomineralization within the malarial parasite digestive vacuole. Heme released from catabolized host red blood cell hemoglobin is toxic, so malarial parasites crystallize heme to nontoxic hemozoin. For years it has been accepted that a number of effective quinoline antimalarial drugs (e.g., chloroquine, quinine, amodiaquine) function by preventing hemozoin crystallization. However, recent studies over the past decade have revealed a surprising molecular diversity in quinoline-heme molecular interactions. This diversity shows that even closely related quinoline drugs may have quite different molecular pharmacology. This paper reviews the molecular diversity and highlights important implications for understanding quinoline antimalarial drug resistance and for future drug design.
Collapse
Affiliation(s)
- Alexander P Gorka
- Department of Chemistry, Department of Biochemistry, Cellular, and Molecular Biology, and Center for Infectious Diseases, Georgetown University , 37th and O Streets, NW, Washington, D.C. 20057, United States
| | | | | |
Collapse
|
19
|
Liu D, Huang G, Yu Y, He Y, Zhang H, Cui H. N-(Aminobutyl)-N-(ethylisoluminol) and hemin dual-functionalized graphene hybrids with high chemiluminescence. Chem Commun (Camb) 2013; 49:9794-6. [DOI: 10.1039/c3cc44765k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
The design, synthesis, in silico ADME profiling, antiplasmodial and antimycobacterial evaluation of new arylamino quinoline derivatives. Eur J Med Chem 2012; 57:259-67. [DOI: 10.1016/j.ejmech.2012.08.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 11/22/2022]
|
21
|
Mullié C, Jonet A, Desgrouas C, Taudon N, Sonnet P. Differences in anti-malarial activity of 4-aminoalcohol quinoline enantiomers and investigation of the presumed underlying mechanism of action. Malar J 2012; 11:65. [PMID: 22401346 PMCID: PMC3314553 DOI: 10.1186/1475-2875-11-65] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/08/2012] [Indexed: 11/10/2022] Open
Abstract
Background A better anti-malarial efficiency and lower neurotoxicity have been reported for mefloquine (MQ) (+)- enantiomer. However, the importance of stereoselectivity remains poorly understood as the anti-malarial activity of pure enantiomer MQ analogues has never been described. Building on these observations, a series of enantiopure 4-aminoalcohol quinoline derivatives has previously been synthesized to optimize the efficiency and reduce possible adverse effects. Their in vitro activity on Plasmodium falciparum W2 and 3D7 strains is reported here along with their inhibition of β-haematin formation and peroxidative degradation of haemin, two possible mechanisms of action of anti-malarial drugs. Results The (S)-enantiomers of this series of 4-aminoalcohol quinoline derivatives were found to be at least as effective as both chloroquine (CQ) and MQ. The derivative with a 5-carbon side-chain length was the more efficient on both P. falciparum strains. (R )-enantiomers displayed an activity decreased by 2 to 15-fold as compared to their (S) counterparts. The inhibition of β-haematin formation was significantly stronger with all tested compounds than with MQ, irrespective of the stereochemistry. Similarly, the inhibition of haemin peroxidation was significantly higher for both (S) and (R)-enantiomers of derivatives with a side-chain length of five or six carbons than for MQ and CQ. Conclusions The prominence of stereochemistry in the anti-malarial activity of 4-aminoalcohol quinoline derivatives is confirmed. The inhibition of β-haematin formation and haemin peroxidation can be put forward as presumed mechanisms of action but do not account for the stereoselectivity of action witnessed in vitro.
Collapse
Affiliation(s)
- Catherine Mullié
- Laboratoire des Glucides, UMR-CNRS 6219, UFR de Pharmacie, 1 rue des Louvels, 80037 Amiens Cedex 1, France.
| | | | | | | | | |
Collapse
|