1
|
The effects of biologically important divalent and trivalent metal cations on the cyclization step of dopamine autooxidation reaction: a quantum chemical study. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
2
|
Kaviani S, Izadyar M, Housaindokht MR. DFT investigation on the selective complexation of Fe 3+ and Al 3+ with hydroxypyridinones used for treatment of the aluminium and iron overload diseases. J Mol Graph Model 2018; 80:182-189. [DOI: 10.1016/j.jmgm.2018.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/21/2017] [Accepted: 01/04/2018] [Indexed: 01/02/2023]
|
3
|
Cardiano P, Giacobello F, Giuffrè O, Sammartano S. Thermodynamic and spectroscopic study of Al 3+ interaction with glycine, l -cysteine and tranexamic acid in aqueous solution. Biophys Chem 2017; 230:10-19. [DOI: 10.1016/j.bpc.2017.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 01/05/2023]
|
5
|
3-Hydroxypyridinone derivatives as metal-sequestering agents for therapeutic use. Future Med Chem 2015; 7:383-410. [PMID: 25826364 DOI: 10.4155/fmc.14.162] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although iron is one of the most important metal ions for living organisms, it becomes toxic when in excess or misplaced. This review presents a glance at representative examples of hydroxypyridinone-based chelators, which have been recently developed as potential clinically useful drugs for metal overload diseases, mostly associated with excess of iron but also other hard metal-ions. It also includes a detailed discussion on the factors assisting chelator design strategy toward fulfillment of the most relevant biochemical properties of hydroxypyridinone chelators, highlighting structure-activity relationships and a variety of potential clinical applications, beyond chelatotherapy. This study appears as a response to the growing interest on metal chelation therapy and opens new perspectives of possible applications in future medicine.
Collapse
|
6
|
An NMR study on the 6,6′-(2-(diethylamino)ethylazanediyl)bis(methylene)bis(5-hydroxy-2-hydroxymethyl-4H-pyran-4-one) interaction with AlIII and ZnII ions. J Inorg Biochem 2015; 148:69-77. [DOI: 10.1016/j.jinorgbio.2015.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/23/2015] [Accepted: 01/23/2015] [Indexed: 01/24/2023]
|
7
|
Nurchi VM, Crisponi G, Arca M, Crespo-Alonso M, Lachowicz JI, Mansoori D, Toso L, Pichiri G, Amelia Santos M, Marques SM, Niclós-Gutiérrez J, González-Pérez JM, Domínguez-Martín A, Choquesillo-Lazarte D, Szewczuk Z, Antonietta Zoroddu M, Peana M. A new bis-3-hydroxy-4-pyrone as a potential therapeutic iron chelating agent. Effect of connecting and side chains on the complex structures and metal ion selectivity. J Inorg Biochem 2014; 141:132-143. [DOI: 10.1016/j.jinorgbio.2014.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 01/02/2023]
|
8
|
Willhite CC, Karyakina NA, Yokel RA, Yenugadhati N, Wisniewski TM, Arnold IMF, Momoli F, Krewski D. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts. Crit Rev Toxicol 2014; 44 Suppl 4:1-80. [PMID: 25233067 PMCID: PMC4997813 DOI: 10.3109/10408444.2014.934439] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007) . Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of "total Al"assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al(+3) to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)(+2) and Al(H2O)6 (+3)] that after complexation with O2(•-), generate Al superoxides [Al(O2(•))](H2O5)](+2). Semireduced AlO2(•) radicals deplete mitochondrial Fe and promote generation of H2O2, O2 (•-) and OH(•). Thus, it is the Al(+3)-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates. Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer's disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants. The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances.
Collapse
Affiliation(s)
- Calvin C. Willhite
- Risk Sciences International, Ottawa, ON, Canada
- McLaughlin Centre for Population Health Risk Assessment, Ottawa, ON, Canada
| | | | - Robert A. Yokel
- Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | | | - Thomas M. Wisniewski
- Departments of Neurology, Psychiatry and Pathology, New York University School of Medicine, New York City, New York, USA
| | - Ian M. F. Arnold
- Occupational Health Program, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Franco Momoli
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Epidemiology and Community Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Daniel Krewski
- Risk Sciences International, Ottawa, ON, Canada
- McLaughlin Centre for Population Health Risk Assessment, Ottawa, ON, Canada
- Department of Epidemiology and Community Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
9
|
Nurchi VM, Crespo-Alonso M, Toso L, Lachowicz JI, Crisponi G, Alberti G, Biesuz R, Domínguez-Martín A, Niclós-Gutíerrez J, González-Pérez JM, Zoroddu MA. IronIII and aluminiumIII complexes with substituted salicyl-aldehydes and salicylic acids. J Inorg Biochem 2013; 128:174-82. [DOI: 10.1016/j.jinorgbio.2013.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 07/08/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
|
10
|
Toso L, Crisponi G, Nurchi VM, Crespo-Alonso M, Lachowicz JI, Mansoori D, Arca M, Santos MA, Marques SM, Gano L, Niclós-Gutíerrez J, González-Pérez JM, Domínguez-Martín A, Choquesillo-Lazarte D, Szewczuk Z. Searching for new aluminium chelating agents: a family of hydroxypyrone ligands. J Inorg Biochem 2013; 130:112-21. [PMID: 24200878 DOI: 10.1016/j.jinorgbio.2013.09.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/12/2013] [Accepted: 09/18/2013] [Indexed: 01/13/2023]
Abstract
Attention is devoted to the role of chelating agents in the treatment of aluminium related diseases. In fact, in spite of the efforts that have drastically reduced the occurrence of aluminium dialysis diseases, they so far constitute a cause of great medical concern. The use of chelating agents for iron and aluminium in different clinical applications has found increasing attention in the last thirty years. With the aim of designing new chelators, we synthesized a series of kojic acid derivatives containing two kojic units joined by different linkers. A huge advantage of these molecules is that they are cheap and easy to produce. Previous works on complex formation equilibria of a first group of these ligands with iron and aluminium highlighted extremely good pMe values and gave evidence of the ability to scavenge iron from inside cells. On these bases a second set of bis-kojic ligands, whose linkers between the kojic chelating moieties are differentiated both in terms of type and size, has been designed, synthesized and characterized. The aluminium(III) complex formation equilibria studied by potentiometry, electrospray ionization mass spectroscopy (ESI-MS), quantum-mechanical calculations and (1)H NMR spectroscopy are here described and discussed, and the structural characterization of one of these new ligands is presented. The in vivo studies show that these new bis-kojic derivatives induce faster clearance from main organs as compared with the monomeric analog.
Collapse
Affiliation(s)
- Leonardo Toso
- Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Cittadella Universitaria, 09042 Monserrato-Cagliari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gumienna-Kontecka E, Nurchi VM, Szebesczyk A, Bilska P, Krzywoszynska K, Kozlowski H. Chelating Agents as Tools for the Treatment of Metal Overload. Z Anorg Allg Chem 2013. [DOI: 10.1002/zaac.201300064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
12
|
Different approaches to the study of chelating agents for iron and aluminium overload pathologies. Anal Bioanal Chem 2012; 405:585-601. [PMID: 23096940 DOI: 10.1007/s00216-012-6468-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/26/2012] [Accepted: 09/28/2012] [Indexed: 12/23/2022]
Abstract
Our objective is to illustrate the activity of the groups operating in Italy involved in identification and study of new chelating agents, mainly intended for treatment of human pathology correlated with metal overload. The objective of "chelation therapy" is removal of toxic metal ions from the human body or attenuation of their toxicity by transforming them into less toxic compounds or by dislocating them from the site at which they exert a toxic action. Because most of this research activity is related to chelating agents for iron and aluminium, diseases related to these two metal ions are briefly treated. Iron overload is the most common metal toxicity disease worldwide. The toxicity of aluminium in dialysis patients was a serious problem for haemodialysis units in the seventies and eighties of the last century. In particular, this review focuses on research performed by the group at Cagliari and Ferrara, and by that at Padova. The former is studying, above all, bisphosphonate and kojic acid derivatives, and the latter is investigating 3,4-hydroxypyridinecarboxylic acids with differently substituted pyridinic rings.
Collapse
|