1
|
Spielvogel KD, Campbell EJ, Chowdhury SR, Benner F, Demir S, Hatzis GP, Petras HR, Sembukuttiarachchige D, Shepherd JJ, Thomas CM, Vlaisavljevich B, Daly SR. Modulation of Fe-Fe distance and spin in diiron complexes using tetradentate ligands with different flanking donors. Chem Commun (Camb) 2024; 60:8399-8402. [PMID: 39028006 DOI: 10.1039/d4cc02522a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Here we report the synthesis and characterization of diiron complexes containing triaryl N4 and N2S2 ligands derived from o-phenylenediamine. The complexes display significant differences in Fe-Fe distances and magnetic properties that depend on the identity of the flanking NMe2 and SMe donor groups.
Collapse
Affiliation(s)
- Kyle D Spielvogel
- The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242, USA.
| | - Emily J Campbell
- The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242, USA.
| | - Sabyasachi Roy Chowdhury
- The University of South Dakota, Department of Chemistry, 414 E Clark St., Vermillion SD, 57069, USA
| | - Florian Benner
- Michigan State University, Department of Chemistry, 578 South Shaw Lane, East Lansing, Michigan 48824, USA
| | - Selvan Demir
- Michigan State University, Department of Chemistry, 578 South Shaw Lane, East Lansing, Michigan 48824, USA
| | - Gillian P Hatzis
- The Ohio State University, Department of Chemistry and Biochemistry, 100 West 18th Ave, Columbus, OH 43210, USA
| | - Hayley R Petras
- The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242, USA.
| | | | - James J Shepherd
- The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242, USA.
| | - Christine M Thomas
- The Ohio State University, Department of Chemistry and Biochemistry, 100 West 18th Ave, Columbus, OH 43210, USA
| | - Bess Vlaisavljevich
- The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242, USA.
- The University of South Dakota, Department of Chemistry, 414 E Clark St., Vermillion SD, 57069, USA
| | - Scott R Daly
- The University of Iowa, Department of Chemistry, E331 Chemistry Building, Iowa City, IA 52242, USA.
| |
Collapse
|
2
|
Hall JN, Vicchio SP, Kropf AJ, Delferro M, Bollini P. Can the Rate of a Catalytic Turnover Be Altered by Ligands in the Absence of Direct Binding Interactions? J Am Chem Soc 2024; 146:12113-12129. [PMID: 38647033 DOI: 10.1021/jacs.4c01978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Second sphere coordination effects ubiquitous in enzymatic catalysis occur through direct interactions, either covalent or non-covalent, with reaction intermediates and transition states. We present herein evidence of indirect second sphere coordination effects in which ligation of water/alkanols far removed from the primary coordination sphere of the active site nevertheless alter energetic landscapes within catalytic redox cycles in the absence of direct physicochemical interactions with surface species mediating catalytic turnovers. Density functional theory, in situ X-ray absorption and infrared spectroscopy, and a wide array of steady-state and transient CO oxidation rate data suggest that the presence of peripheral water renders oxidation half-cycles within two-electron redox cycles over μ3-oxo-bridged trimers in MIL-100(M) more kinetically demanding. Communication between ligated water and the active site appears to occur through the Fe-O-Fe backbone, as inferred from spin density variations on the central μ3-oxygen 'junction'. Evidence is provided for the generality of these second sphere effects in that they influence different types of redox half-cycles or metals, and can be amplified or attenuated through choice of coordinating ligand. Specifically in the case of MIL-100(M) materials, the Cr isostructure can be made to kinetically mimic the Fe variant by disproportionately hindering oxidation half-cycles relative to the reduction half-cycles. Kinetic and spectroscopic inferences presented here significantly expand both the conceptual definition of second sphere effects as well as the palette of synthetic levers available for tuning catalytic redox performance through chemical ligation.
Collapse
Affiliation(s)
- Jacklyn N Hall
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Stephen P Vicchio
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - A Jeremy Kropf
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Praveen Bollini
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
3
|
Hall JN, Kropf AJ, Delferro M, Bollini P. Kinetic and X-ray Absorption Spectroscopic Analysis of Catalytic Redox Cycles over Highly Uniform Polymetal Oxo Clusters. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Jacklyn N. Hall
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - A. Jeremy Kropf
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Praveen Bollini
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
4
|
Yadav O, Ansari M, Ansari A. Electronic structures, bonding aspects and spectroscopic parameters of homo/hetero valent bridged dinuclear transition metal complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121331. [PMID: 35597159 DOI: 10.1016/j.saa.2022.121331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Bridged dinuclear metal complexes have fascinated scientists worldwide, and remarkable success has been achieved to unravel the electronic structures, structure-function relationship, coordination environments, and fine mechanistic details of the enzymes owing to the repercussion of biomimetic studies carried out on dinuclear model systems. Molecular level study of these systems integrated with spectroscopic study helps in gaining deep insights about structural and electronic aspects of natural enzymatic systems. Considering the same, here first time we report DFT study on bridged non-heme metal complexes based on N-Et-HPTB ligand system containing homovalent (MIIMII); {[(MnII)2(O2CCH3)(N-Et-HPTB)]2+; Species I), [(FeII)2(O2CCH3)(N-Et-HPTB)]2+; Species II), [(CoII)2(O2CCH3)(N-Et-HPTB)]2+; Species III)} and heterovalent (MIIIMII): {[(MnIII)(MnII)(O2)(N-Et-HPTB)]2+; Species Ia) [(FeIII)(FeII)(O2)(N-Et-HPTB)]2+; Species IIa) and [(CoIII)(CoII)(O2)(N-Et-HPTB)]2+; Species IIIa)} dinuclear metal centres. Bridging oxygen bears a significant spin density which may prompt important chemical reactions involving activation of bonds like C-H/O-H/N-H etc. TD-DFT calculations for UV-Visible absorption have been carried out to further shed light on structural-functional and electronic structures of these dinuclear species. Studying these dinuclear species may be a good starting point for the study of active sites of the bimetallic centre of dinuclear enzymes and thus may serve as fascinating spectroscopic models. Further, FMO analysis, MEP mapping, and NBO calculations were employed to analyze bonding aspects predict theoretical reactivity behaviour and any kind of stabilizing interactions present in the reported species.
Collapse
Affiliation(s)
- Oval Yadav
- Department of Chemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Mursaleem Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Pawai 400076, India
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, Mahendergarh 123031, India.
| |
Collapse
|
5
|
Hall JN, Bollini P. Role of metal identity and speciation in the
low‐temperature
oxidation of methane over
tri‐metal
oxo clusters. AIChE J 2021. [DOI: 10.1002/aic.17496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jacklyn N. Hall
- William A. Brookshire Department of Chemical & Biomolecular Engineering University of Houston Houston Texas USA
| | - Praveen Bollini
- William A. Brookshire Department of Chemical & Biomolecular Engineering University of Houston Houston Texas USA
| |
Collapse
|
6
|
Shteinman AA, Mitra M. Nonheme mono- and dinuclear iron complexes in bio-inspired C H and C C bond hydroxylation reactions: Mechanistic insight. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Miller KR, Biswas S, Jasniewski A, Follmer AH, Biswas A, Albert T, Sabuncu S, Bominaar EL, Hendrich MP, Moënne-Loccoz P, Borovik AS. Artificial Metalloproteins with Dinuclear Iron-Hydroxido Centers. J Am Chem Soc 2021; 143:2384-2393. [PMID: 33528256 DOI: 10.1021/jacs.0c12564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dinuclear iron centers with a bridging hydroxido or oxido ligand form active sites within a variety of metalloproteins. A key feature of these sites is the ability of the protein to control the structures around the Fe centers, which leads to entatic states that are essential for function. To simulate this controlled environment, artificial proteins have been engineered using biotin-streptavidin (Sav) technology in which Fe complexes from adjacent subunits can assemble to form [FeIII-(μ-OH)-FeIII] cores. The assembly process is promoted by the site-specific localization of the Fe complexes within a subunit through the designed mutation of a tyrosinate side chain to coordinate the Fe centers. An important outcome is that the Sav host can regulate the Fe···Fe separation, which is known to be important for function in natural metalloproteins. Spectroscopic and structural studies from X-ray diffraction methods revealed uncommonly long Fe···Fe separations that change by less than 0.3 Å upon the binding of additional bridging ligands. The structural constraints imposed by the protein host on the di-Fe cores are unique and create examples of active sites having entatic states within engineered artificial metalloproteins.
Collapse
Affiliation(s)
- Kelsey R Miller
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697, United States
| | - Saborni Biswas
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Andrew Jasniewski
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Alec H Follmer
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697, United States
| | - Ankita Biswas
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697, United States
| | - Therese Albert
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Mail Code HRC3, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Sinan Sabuncu
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Mail Code HRC3, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Emile L Bominaar
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael P Hendrich
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Pierre Moënne-Loccoz
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Mail Code HRC3, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - A S Borovik
- Department of Chemistry, 1102 Natural Sciences II, University of California, Irvine, California 92697, United States
| |
Collapse
|
8
|
Thakur S, Gomila RM, Frontera A, Chattopadhyay S. A theoretical insight into the formation of chalcogen bonding (ChB) interactions involving coordinated DMSO molecules as σ-hole donors and benzoate groups as σ-hole acceptors in a dinuclear copper(ii) complex. CrystEngComm 2021. [DOI: 10.1039/d1ce00624j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of two chalcogen bonding (ChB) interactions involving coordinated DMSO molecules as σ-hole donors and the O atoms of carboxylate groups as acceptors in a dimeric copper(ii) complex has been described.
Collapse
Affiliation(s)
- Snehasish Thakur
- Department of Chemistry, Inorganic Section
- Jadavpur University
- Kolkata 700 032
- India
| | - Rosa M. Gomila
- Serveis Cientificotècnics
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | - Antonio Frontera
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | | |
Collapse
|
9
|
Shteinman AA. Bioinspired Oxidation of Methane: From Academic Models of Methane Monooxygenases to Direct Conversion of Methane to Methanol. KINETICS AND CATALYSIS 2020. [DOI: 10.1134/s0023158420030180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Pal N, Majumdar A. Transfer of hydrosulfide from thiols to iron(ii): a convenient synthetic route to nonheme diiron(ii)–hydrosulfide complexes. Dalton Trans 2019; 48:5903-5908. [DOI: 10.1039/c8dt04092c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The synthesis and reactivity of an unprecedented nonheme diiron(ii)–hydrosulfide complex via Fe(ii) mediated C–S bond cleavage of thiols.
Collapse
Affiliation(s)
- Nabhendu Pal
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Amit Majumdar
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| |
Collapse
|
11
|
Ayad M, Klein Gebbink RJM, Le Mest Y, Schollhammer P, Le Poul N, Pétillon FY, Mandon D. Mononuclear iron(ii) complexes containing a tripodal and macrocyclic nitrogen ligand: synthesis, reactivity and application in cyclohexane oxidation catalysis. Dalton Trans 2018; 47:15596-15612. [PMID: 30346459 DOI: 10.1039/c8dt02952k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Two novel tripodal ligands L1 and L2 based on a tris(methylpyridyl)amine (TPA) motif have been prepared and reacted with two different iron(ii) salts. The ligand L1 contains a bis(amino-phenyl)-TPA group whereas the macrocyclic ligand L2 displays two different coordinating cores, namely TPA and pyridine-dicarboxamide. The resulting mononuclear complexes 1-4 have been characterized in the solid state and in solution by spectroscopic and electrochemical methods. All complexes are high spin and mainly pentacoordinated. X-ray diffraction analyses of the crystals of complexes 2 and 3 demonstrate that the coordination sphere of the iron(ii) centre adopts either a distorted bipyramidal-trigonal or square pyramidal geometry. In the absence of an exogenous substrate, oxidation of complex 2 by H2O2 induces an intramolecular aromatic hydroxylation, as shown by the X-ray structure of the resulting dinuclear complex 2'. Catalytic studies in the presence of a substrate (cyclohexane) show that the reaction process is strongly impacted by the macrocyclic topology of the ligand and the nature of the counter-ion.
Collapse
Affiliation(s)
- Massinisa Ayad
- UMR CNRS 6521, Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique, Université de Bretagne Occidentale, 6 Avenue Victor Le Gorgeu, CS 93837, 29238 Brest Cedex 3, France.
| | | | | | | | | | | | | |
Collapse
|
12
|
Casanova I, Durán ML, Viqueira J, Sousa-Pedrares A, Zani F, Real JA, García-Vázquez JA. Metal complexes of a novel heterocyclic benzimidazole ligand formed by rearrangement-cyclization of the corresponding Schiff base. Electrosynthesis, structural characterization and antimicrobial activity. Dalton Trans 2018; 47:4325-4340. [DOI: 10.1039/c8dt00532j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One-pot electrochemical synthesis of metal complexes containing a novel heterocyclic benzimidazole ligand is reported and characterized.
Collapse
Affiliation(s)
- I. Casanova
- Departamento de Química Inorgánica
- Universidad de Santiago de Compostela
- Santiago de Compostela
- Spain
| | - M. L. Durán
- Departamento de Química Inorgánica
- Universidad de Santiago de Compostela
- Santiago de Compostela
- Spain
| | - J. Viqueira
- Departamento de Química Inorgánica
- Universidad de Santiago de Compostela
- Santiago de Compostela
- Spain
| | - A. Sousa-Pedrares
- Departamento de Química Inorgánica
- Universidad de Santiago de Compostela
- Santiago de Compostela
- Spain
| | - F. Zani
- Departamento di Farmacia
- Parco Area delle Scienze
- 43124 Parma
- Italy
| | - J. A. Real
- Institut de Ciencia Molecular Departament de Química Inorgánica
- Universitat de Valencia
- Valencia
- Spain
| | - J. A. García-Vázquez
- Departamento de Química Inorgánica
- Universidad de Santiago de Compostela
- Santiago de Compostela
- Spain
| |
Collapse
|
13
|
Wang F, Becker S, Minier MA, Loas A, Jackson MN, Lippard SJ. Tuning the Diiron Core Geometry in Carboxylate-Bridged Macrocyclic Model Complexes Affects Their Redox Properties and Supports Oxidation Chemistry. Inorg Chem 2017; 56:11050-11058. [DOI: 10.1021/acs.inorgchem.7b01418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Fang Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sabine Becker
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mikael A. Minier
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Megan N. Jackson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Kodera M, Ishiga S, Tsuji T, Sakurai K, Hitomi Y, Shiota Y, Sajith PK, Yoshizawa K, Mieda K, Ogura T. Formation and High Reactivity of the anti-Dioxo Form of High-Spin μ-Oxodioxodiiron(IV) as the Active Species That Cleaves Strong C-H Bonds. Chemistry 2016; 22:5924-36. [PMID: 26970337 DOI: 10.1002/chem.201600048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Indexed: 11/12/2022]
Abstract
Recently, it was shown that μ-oxo-μ-peroxodiiron(III) is converted to high-spin μ-oxodioxodiiron(IV) through O-O bond scission. Herein, the formation and high reactivity of the anti-dioxo form of high-spin μ-oxodioxodiiron(IV) as the active oxidant are demonstrated on the basis of resonance Raman and electronic-absorption spectral changes, detailed kinetic studies, DFT calculations, activation parameters, kinetic isotope effects (KIE), and catalytic oxidation of alkanes. Decay of μ-oxodioxodiiron(IV) was greatly accelerated on addition of substrate. The reactivity order of substrates is toluene<ethylbenzene≈cumene<trans-β-methylstyrene. The rate constants increased proportionally to the substrate concentration at low substrate concentration. At high substrate concentration, however, the rate constants converge to the same value regardless of the kind of substrate. This is explained by a two-step mechanism in which anti-μ-oxodioxodiiron(IV) is formed by syn-to-anti transformation of the syn-dioxo form and reacts with substrates as the oxidant. The anti-dioxo form is 620 times more reactive in the C-H bond cleavage of ethylbenzene than the most reactive diiron system reported so far. The KIE for the reaction with toluene/[D8 ]toluene is 95 at -30 °C, which the largest in diiron systems reported so far. The present diiron complex efficiently catalyzes the oxidation of various alkanes with H2 O2 .
Collapse
Affiliation(s)
- Masahito Kodera
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Tatara Miyakotani 1-3, Kyotanabe Kyoto, 610-0321, Japan.
| | - Shin Ishiga
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Tatara Miyakotani 1-3, Kyotanabe Kyoto, 610-0321, Japan
| | - Tomokazu Tsuji
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Tatara Miyakotani 1-3, Kyotanabe Kyoto, 610-0321, Japan
| | - Katsutoshi Sakurai
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Tatara Miyakotani 1-3, Kyotanabe Kyoto, 610-0321, Japan
| | - Yutaka Hitomi
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Tatara Miyakotani 1-3, Kyotanabe Kyoto, 610-0321, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - P K Sajith
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Kaoru Mieda
- Department of Life Science, University of Hyogo, Kouto 2-1, Ako-gun Kamigori-cho Hyogo, 678-1297, Japan
| | - Takashi Ogura
- Department of Life Science, University of Hyogo, Kouto 2-1, Ako-gun Kamigori-cho Hyogo, 678-1297, Japan
| |
Collapse
|
15
|
Pal N, Majumdar A. Controlling the Reactivity of Bifunctional Ligands: Carboxylate-Bridged Nonheme Diiron(II) Complexes Bearing Free Thiol Groups. Inorg Chem 2016; 55:3181-91. [DOI: 10.1021/acs.inorgchem.6b00316] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nabhendu Pal
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Amit Majumdar
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
16
|
Minier MA, Lippard SJ. (19)F NMR study of ligand dynamics in carboxylate-bridged diiron(II) complexes supported by a macrocyclic ligand. Dalton Trans 2015; 44:18111-21. [PMID: 26418547 PMCID: PMC4618381 DOI: 10.1039/c5dt02138c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A series of asymmetrically carboxylate-bridged diiron(ii) complexes featuring fluorine atoms as NMR spectroscopic probes, [Fe2(PIM)(Ar(4F-Ph)CO2)2] (10), [Fe2(F2PIM)(Ar(Tol)CO2)2] (11), and [Fe2(F2PIM)(Ar(4F-Ph)CO2)2] (12), were prepared and characterized by X-ray crystallography, Mössbauer spectroscopy, and VT (19)F NMR spectroscopy. These complexes are part of a rare family of syn N-donor diiron(ii) compounds, [Fe2(X2PIM)(RCO2)2], that are structurally very similar to the active site of the hydroxylase enzyme component of reduced methane monooxygenase (MMOHred). Solution characterization of these complexes demonstrates that they undergo intramolecular carboxylate rearrangements, or carboxylate shifts, a dynamic feature relevant to the reactivity of the diiron centers in bacterial multicomponent monooxygenases.
Collapse
Affiliation(s)
- Mikael A Minier
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
17
|
Abstract
In order to address how diverse metalloprotein active sites, in particular those containing iron and copper, guide O₂binding and activation processes to perform diverse functions, studies of synthetic models of the active sites have been performed. These studies have led to deep, fundamental chemical insights into how O₂coordinates to mono- and multinuclear Fe and Cu centers and is reduced to superoxo, peroxo, hydroperoxo, and, after O-O bond scission, oxo species relevant to proposed intermediates in catalysis. Recent advances in understanding the various factors that influence the course of O₂activation by Fe and Cu complexes are surveyed, with an emphasis on evaluating the structure, bonding, and reactivity of intermediates involved. The discussion is guided by an overarching mechanistic paradigm, with differences in detail due to the involvement of disparate metal ions, nuclearities, geometries, and supporting ligands providing a rich tapestry of reaction pathways by which O₂is activated at Fe and Cu sites.
Collapse
|
18
|
Doble MV, Ward AC, Deuss PJ, Jarvis AG, Kamer PC. Catalyst design in oxidation chemistry; from KMnO4 to artificial metalloenzymes. Bioorg Med Chem 2014; 22:5657-77. [DOI: 10.1016/j.bmc.2014.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 06/27/2014] [Accepted: 07/01/2014] [Indexed: 01/07/2023]
|
19
|
Huxel T, Leone S, Lan Y, Demeshko S, Klingele J. 2‐Amino‐4‐(2‐pyridyl)thiazole as Chelating Ligand: A Dinuclear Oxido‐Bridged Ferric Complex and Mononuclear 3d Metal Complexes. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201400041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Timo Huxel
- Institut für Anorganische und Analytische Chemie, Albert‐Ludwigs‐Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany, http://www.coordchem.de
| | - Selina Leone
- Institut für Anorganische und Analytische Chemie, Albert‐Ludwigs‐Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany, http://www.coordchem.de
| | - Yanhua Lan
- Institut für Anorganische Chemie, Karlsruher Institut für Technologie (KIT), Engesserstr. 15, Geb. 30.45, 76131 Karlsruhe, Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Georg‐August‐Universität Göttingen, Tammannstr. 4, 37077 Göttingen, Germany
| | - Julia Klingele
- Institut für Anorganische und Analytische Chemie, Albert‐Ludwigs‐Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany, http://www.coordchem.de
| |
Collapse
|
20
|
Minier MA, Lippard SJ. Conversion Between Doubly and Triply Carboxylate-Bridged Di(ethylzinc) Complexes and Formation of the (μ-Oxo)tetrazinc Carboxylate [Zn 4O(Ar TolCO 2) 6]. Organometallics 2014; 33:1462-1466. [PMID: 24761049 PMCID: PMC3994167 DOI: 10.1021/om5000503] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
Ethylzinc 2,6-bis(p-tolyl)benzoate converts between
two forms in solution. Through NMR spectroscopic techniques and X-ray
crystallography, the species in equilibrium were identified as [Zn2(ArTolCO2)2(Et)2(THF)2] (1), [Zn2(ArTolCO2)3(Et)(THF)] (2), and diethylzinc
(ArTol = 2,6-bis(p-tolyl)phenyl). The
equilibrium provides a model for understanding the speciation between
doubly and triply m-terphenylcarboxylate bridged
diiron(II) and mononuclear iron(II) complexes. Evidence is presented
for the occurrence of coordinatively unsaturated trigonal zinc species
in solution. Both 1 and 2 decompose in air
to form the T-symmetric oxozinc carboxylate [Zn4O(ArTolCO2)6] (3).
Collapse
Affiliation(s)
- Mikael A Minier
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen J Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
21
|
Majumdar A, Apfel UP, Jiang Y, Moënne-Loccoz P, Lippard SJ. Versatile reactivity of a solvent-coordinated diiron(II) compound: synthesis and dioxygen reactivity of a mixed-valent Fe(II)Fe(III) species. Inorg Chem 2014; 53:167-81. [PMID: 24359397 PMCID: PMC3915513 DOI: 10.1021/ic4019585] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A new, DMF-coordinated, preorganized diiron compound [Fe2(N-Et-HPTB)(DMF)4](BF4)3 (1) was synthesized, avoiding the formation of [Fe(N-Et-HPTB)](BF4)2 (10) and [Fe2(N-Et-HPTB)(μ-MeCONH)](BF4)2 (11), where N-Et-HPTB is the anion of N,N,N',N'-tetrakis[2-(1-ethylbenzimidazolyl)]-2-hydroxy-1,3-diaminopropane. Compound 1 is a versatile reactant from which nine new compounds have been generated. Transformations include solvent exchange to yield [Fe2(N-Et-HPTB)(MeCN)4](BF4)3 (2), substitution to afford [Fe2(N-Et-HPTB)(μ-RCOO)](BF4)2 (3, R = Ph; 4, RCOO = 4-methyl-2,6-diphenyl benzoate]), one-electron oxidation by (Cp2Fe)(BF4) to yield a Robin-Day class II mixed-valent diiron(II,III) compound, [Fe2(N-Et-HPTB)(μ-PhCOO)(DMF)2](BF4)3 (5), two-electron oxidation with tris(4-bromophenyl)aminium hexachloroantimonate to generate [Fe2(N-Et-HPTB)Cl3(DMF)](BF4)2 (6), reaction with (2,2,6,6-tetramethylpiperidin-1-yl)oxyl to form [Fe5(N-Et-HPTB)2(μ-OH)4(μ-O)(DMF)2](BF4)4 (7), and reaction with dioxygen to yield an unstable peroxo compound that decomposes at room temperature to generate [Fe4(N-Et-HPTB)2(μ-O)3(H2O)2](BF4)·8DMF (8) and [Fe4(N-Et-HPTB)2(μ-O)4](BF4)2 (9). Compound 5 loses its bridging benzoate ligand upon further oxidation to form [Fe2(N-Et-HPTB)(OH)2(DMF)2](BF4)3 (12). Reaction of the diiron(II,III) compound 5 with dioxygen was studied in detail by spectroscopic methods. All compounds (1-12) were characterized by single-crystal X-ray structure determinations. Selected compounds and reaction intermediates were further examined by a combination of elemental analysis, electronic absorption spectroscopy, Mössbauer spectroscopy, EPR spectroscopy, resonance Raman spectroscopy, and cyclic voltammetry.
Collapse
Affiliation(s)
- Amit Majumdar
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Ulf-Peter Apfel
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Yunbo Jiang
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health and Science University, Portland, Oregon 97239
| | - Pierre Moënne-Loccoz
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health and Science University, Portland, Oregon 97239
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
22
|
Banerjee R, Meier KK, Münck E, Lipscomb JD. Intermediate P* from soluble methane monooxygenase contains a diferrous cluster. Biochemistry 2013; 52:4331-42. [PMID: 23718184 DOI: 10.1021/bi400182y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
During a single turnover of the hydroxylase component (MMOH) of soluble methane monooxygenase from Methylosinus trichosporium OB3b, several discrete intermediates are formed. The diiron cluster of MMOH is first reduced to the Fe(II)Fe(II) state (H(red)). O₂ binds rapidly at a site away from the cluster to form the Fe(II)Fe(II) intermediate O, which converts to an Fe(III)Fe(III)-peroxo intermediate P and finally to the Fe(IV)Fe(IV) intermediate Q. Q binds and reacts with methane to yield methanol and water. The rate constants for these steps are increased by a regulatory protein, MMOB. Previously reported transient kinetic studies have suggested that an intermediate P* forms between O and P in which the g = 16 EPR signal characteristic of the reduced diiron cluster of H(red) and O is lost. This was interpreted as signaling oxidation of the cluster, but a low level of accumulation of P* prevented further characterization. In this study, three methods for directly detecting and trapping P* are applied together to allow its spectroscopic and kinetic characterization. First, the MMOB mutant His33Ala is used to specifically slow the decay of P* without affecting its formation rate, leading to its nearly quantitative accumulation. Second, spectra-kinetic data collection is used to provide a sensitive measure of the formation and decay rate constants of intermediates as well as their optical spectra. Finally, the substrate furan is included to react with Q and quench its strong chromophore. The optical spectrum of P* closely mimics those of H(red) and O, but it is distinctly different from that of P. The reaction cycle rate constants allowed prediction of the times for maximal accumulation of the intermediates. Mössbauer spectra of rapid freeze-quench samples at these times show that the intermediates are formed at almost exactly the predicted levels. The Mössbauer spectra show that the diiron cluster of P*, quite unexpectedly, is in the Fe(II)Fe(II) state. Thus, the loss of the g = 16 EPR signal results from a change in the electronic structure of the Fe(II)Fe(II) center rather than oxidation. The similarity of the optical and Mössbauer spectra of H(red), O, and P* suggests that only subtle changes occur in the electronic and physical structure of the diiron cluster as P* forms. Nevertheless, the changes that do occur are necessary for O₂ to be activated for hydrocarbon oxidation.
Collapse
Affiliation(s)
- Rahul Banerjee
- Department of Biochemistry, Molecular Biology, and Biophysics and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | | | | |
Collapse
|
23
|
Li Y, Myae Soe CM, Wilson JJ, Tuang SL, Apfel UP, Lippard SJ. Triptycene-based Bis(benzimidazole) Carboxylate-Bridged Biomimetic Diiron(II) Complexes. Eur J Inorg Chem 2013; 2013:2011-2019. [PMID: 23585728 PMCID: PMC3625018 DOI: 10.1002/ejic.201201387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Indexed: 11/06/2022]
Abstract
A triptycene-based bis(benzimidazole) ester ligand, L3, was designed to enhance the electron donating ability of the heterocyclic nitrogen atoms relative to those of the first generation bis(benzoxazole) analogs, L1 and L2. A convergent synthesis of L3 was designed and executed. Three-component titration experiments using UV-visible spectroscopy revealed that the desired diiron(II) complex could be obtained with a 1:2:1 ratio of L3:Fe(OTf)2(MeCN)2:external carboxylate reactants. X-ray crystallographic studies of two diiron complexes derived in this manner from L3 revealed their formulas to be [Fe2L3(μ-OH)(μ-O2CR)(OTf)2], where R = 2,6-bis(p-tolyl)benzoate (7) or triphenylacetate (8). The structures are similar to that of a diiron complex derived from L1, [Fe2L1(μ-OH)(μ-O2CArTol)(OTf)2] (9) with a notable difference being that, in 7 and 8, the geometry at iron more closely resembles square-pyramidal than trigonal-bipyramidal. Mössbauer spectroscopic analyses of 7 and 8 indicate the presence of high-spin diiron(II) cores. These results demonstrate the importance of substituting benzimidazole for benzoxazole for assembling biomimetic diiron complexes with syn disposition of two N-donor ligands, as found in O2-activating carboxylate-bridged diiron centers in biology.
Collapse
Affiliation(s)
- Yang Li
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Chan Myae Myae Soe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Justin J. Wilson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Suan Lian Tuang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Ulf-Peter Apfel
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
24
|
Matias AC, Villa dos Santos N, Chelegão R, Nomura CS, Fiorito PA, Cerchiaro G. Cu(GlyGlyHis) effects on MCF7 cells: Copper uptake, reactive oxygen species generation and membrane topography changes. J Inorg Biochem 2012; 116:172-9. [DOI: 10.1016/j.jinorgbio.2012.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/08/2012] [Accepted: 07/09/2012] [Indexed: 12/18/2022]
|
25
|
Li Y, Wilson JJ, Do LH, Apfel UP, Lippard SJ. A C2-symmetric, basic Fe(III) carboxylate complex derived from a novel triptycene-based chelating carboxylate ligand. Dalton Trans 2012; 41:9272-5. [PMID: 22751622 DOI: 10.1039/c2dt31260c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A triptycene-based bis(benzoxazole) diacid ligand H(2)L2(Ph4) bearing sterically encumbering groups was synthesized. Treatment of H(2)L2(Ph4) with Fe(OTf)(3) afforded a C(2)-symmetric trinuclear iron(III) complex, [NaFe(3)(L2(Ph4))(2)(μ(3)-O)(μ-O(2)CCPh(3))(2)(H(2)O)(3)](OTf)(2) (8). The triiron core of this complex adopts the well known "basic iron acetate" structure where the heteroleptic carboxylates, comprising two Ph(3)CCO(2)(-) and two (L2(Ph4))(2-) ligands, donate the six carboxylate bridges. The (L2(Ph4))(2-) ligand undergoes only minor conformational changes upon formation of the complex.
Collapse
Affiliation(s)
- Yang Li
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
26
|
Li Y, Cao R, Lippard SJ. Design and synthesis of a novel triptycene-based ligand for modeling carboxylate-bridged diiron enzyme active sites. Org Lett 2011; 13:5052-5. [PMID: 21875093 DOI: 10.1021/ol201882v] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A novel triptycene-based ligand with a preorganized framework was designed to model carboxylate-bridged diiron active sites in bacterial multicomponent monooxygenase (BMM) hydroxylase enzymes. The synthesis of the bis(benzoxazole)-appended ligand L1 depicted was accomplished in 11 steps. Reaction of L1 with iron(II) triflate and a carboxylate source afforded the desired diiron(II) complex [Fe(2)L1(μ-OH)(μ-O(2)CAr(Tol))(OTf)(2)].
Collapse
Affiliation(s)
- Yang Li
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|