1
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
2
|
Palacios AR, Rossi MA, Mahler GS, Vila AJ. Metallo-β-Lactamase Inhibitors Inspired on Snapshots from the Catalytic Mechanism. Biomolecules 2020; 10:E854. [PMID: 32503337 PMCID: PMC7356002 DOI: 10.3390/biom10060854] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
β-Lactam antibiotics are the most widely prescribed antibacterial drugs due to their low toxicity and broad spectrum. Their action is counteracted by different resistance mechanisms developed by bacteria. Among them, the most common strategy is the expression of β-lactamases, enzymes that hydrolyze the amide bond present in all β-lactam compounds. There are several inhibitors against serine-β-lactamases (SBLs). Metallo-β-lactamases (MBLs) are Zn(II)-dependent enzymes able to hydrolyze most β-lactam antibiotics, and no clinically useful inhibitors against them have yet been approved. Despite their large structural diversity, MBLs have a common catalytic mechanism with similar reaction species. Here, we describe a number of MBL inhibitors that mimic different species formed during the hydrolysis process: substrate, transition state, intermediate, or product. Recent advances in the development of boron-based and thiol-based inhibitors are discussed in the light of the mechanism of MBLs. We also discuss the use of chelators as a possible strategy, since Zn(II) ions are essential for substrate binding and catalysis.
Collapse
Affiliation(s)
- Antonela R. Palacios
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina; (A.R.P.); (M.-A.-R.)
| | - María-Agustina Rossi
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina; (A.R.P.); (M.-A.-R.)
| | - Graciela S. Mahler
- Laboratorio de Química Farmacéutica, Facultad de Química, Universidad de la Republica (UdelaR), Montevideo 11800, Uruguay;
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina; (A.R.P.); (M.-A.-R.)
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| |
Collapse
|
3
|
Cheng Z, VanPelt J, Bergstrom A, Bethel C, Katko A, Miller C, Mason K, Cumming E, Zhang H, Kimble RL, Fullington S, Bretz SL, Nix JC, Bonomo RA, Tierney DL, Page RC, Crowder MW. A Noncanonical Metal Center Drives the Activity of the Sediminispirochaeta smaragdinae Metallo-β-lactamase SPS-1. Biochemistry 2018; 57:5218-5229. [PMID: 30106565 PMCID: PMC6314204 DOI: 10.1021/acs.biochem.8b00728] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In an effort to evaluate whether a recently reported putative metallo-β-lactamase (MβL) contains a novel MβL active site, SPS-1 from Sediminispirochaeta smaragdinae was overexpressed, purified, and characterized using spectroscopic and crystallographic studies. Metal analyses demonstrate that recombinant SPS-1 binds nearly 2 equiv of Zn(II), and steady-state kinetic studies show that the enzyme hydrolyzes carbapenems and certain cephalosporins but not β-lactam substrates with bulky substituents at the 6/7 position. Spectroscopic studies of Co(II)-substituted SPS-1 suggest a novel metal center in SPS-1, with a reduced level of spin coupling between the metal ions and a novel Zn1 metal binding site. This site was confirmed with a crystal structure of the enzyme. The structure shows a Zn2 site that is similar to that in NDM-1 and other subclass B1 MβLs; however, the Zn1 metal ion is coordinated by two histidine residues and a water molecule, which is held in position by a hydrogen bond network. The Zn1 metal is displaced nearly 1 Å from the position reported in other MβLs. The structure also shows extended helices above the active site, which create a binding pocket that precludes the binding of substrates with large, bulky substituents at the 6/7 position of β-lactam antibiotics. This study reveals a novel metal binding site in MβLs and suggests that the targeting of metal binding sites in MβLs with inhibitors is now more challenging with the identification of this new MβL.
Collapse
Affiliation(s)
- Zishuo Cheng
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Jamie VanPelt
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Alexander Bergstrom
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Christopher Bethel
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106
| | - Andrew Katko
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Callie Miller
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Kelly Mason
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Erin Cumming
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Huan Zhang
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Robert L. Kimble
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Sarah Fullington
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Stacey Lowery Bretz
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Jay C. Nix
- Molecular Biology Consortium, Beamline 4.2.2, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, and the CWRU-Cleveland VAMC Center of Antimicrobial Resistance and Epidemiology, Cleveland, OH 44106
| | - David L. Tierney
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Richard C. Page
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| | - Michael W Crowder
- Department of Chemistry and Biochemistry, 651 E. High Street, 160 Hughes Laboratories, Miami University, Oxford, OH 45056
| |
Collapse
|
4
|
A general reaction mechanism for carbapenem hydrolysis by mononuclear and binuclear metallo-β-lactamases. Nat Commun 2017; 8:538. [PMID: 28912448 PMCID: PMC5599593 DOI: 10.1038/s41467-017-00601-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/12/2017] [Indexed: 12/16/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae threaten human health, since carbapenems are last resort drugs for infections by such organisms. Metallo-β-lactamases (MβLs) are the main mechanism of resistance against carbapenems. Clinically approved inhibitors of MBLs are currently unavailable as design has been limited by the incomplete knowledge of their mechanism. Here, we report a biochemical and biophysical study of carbapenem hydrolysis by the B1 enzymes NDM-1 and BcII in the bi-Zn(II) form, the mono-Zn(II) B2 Sfh-I and the mono-Zn(II) B3 GOB-18. These MβLs hydrolyse carbapenems via a similar mechanism, with accumulation of the same anionic intermediates. We characterize the Michaelis complex formed by mono-Zn(II) enzymes, and we identify all intermediate species, enabling us to propose a chemical mechanism for mono and binuclear MβLs. This common mechanism open avenues for rationally designed inhibitors of all MβLs, notwithstanding the profound differences between these enzymes’ active site structure, β-lactam specificity and metal content. Carbapenem-resistant bacteria pose a major health threat by expressing metallo-β-lactamases (MβLs), enzymes able to hydrolyse these life-saving drugs. Here the authors use biophysical and computational methods and show that different MβLs share the same reaction mechanism, suggesting new strategies for drug design.
Collapse
|
5
|
Zhang Y, Qiao P, Li S, Feng X, Bian L. Molecular recognition and binding of beta-lactamase II from Bacillus cereus with penicillin V and sulbactam by spectroscopic analysis in combination with docking simulation. LUMINESCENCE 2017; 32:932-941. [PMID: 28185399 DOI: 10.1002/bio.3274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/22/2016] [Accepted: 11/26/2016] [Indexed: 11/10/2022]
Abstract
The molecular recognition and binding interaction of beta-lactamase II from Bacillus cereus (Bc II) with penicillin V (PV) and sulbactam (Sul) at 277 K were studied by spectroscopic analysis and molecular docking. The results showed that a non-fluorescence static complex was separately formed between Bc II and two ligands, the molecular ratio of Bc II to PV or Sul was both 1:1 in the binding and the binding constants were 2.00 × 106 and 3.98 × 105 (L/mol), respectively. The negative free energy changes and apparent activation energies indicated that both the binding processes were spontaneous. Molecular docking showed that in the binding process, the whole Sul molecule entered into the binding pocket of Bc II while only part of the whole PV molecule entered into the pocket due to a long side chain, and electrostatic interactions were the major contribution to the binding processes. In addition, a weak conformational change of Bc II was also observed in the molecular recognition and binding process of Bc II with PV or Sul. This study may provide some valuable information for exploring the recognition and binding of proteins with ligands in the binding process and for the design of novel super-antibiotics.
Collapse
Affiliation(s)
- Yeli Zhang
- College of Life Science, Northwest University, Xi'an, Shaan'xi, People's Republic of China
| | - Pan Qiao
- College of Life Science, Northwest University, Xi'an, Shaan'xi, People's Republic of China
| | - Shuaihua Li
- College of Life Science, Northwest University, Xi'an, Shaan'xi, People's Republic of China
| | - Xuan Feng
- College of Life Science, Northwest University, Xi'an, Shaan'xi, People's Republic of China
| | - Liujiao Bian
- College of Life Science, Northwest University, Xi'an, Shaan'xi, People's Republic of China
| |
Collapse
|
6
|
Aitha M, Al-Adbul-Wahid S, Tierney DL, Crowder MW. Probing substrate binding to the metal binding sites in metallo-β-lactamase L1 during catalysis. MEDCHEMCOMM 2016; 7:194-201. [PMID: 27087914 DOI: 10.1039/c5md00358j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal ions in metallo-β-lactamases (MBLs) play a major role in catalysis. In this study we investigated the role of the metal ions in the Zn1 and Zn2 sites of MBL L1 during catalysis. A ZnCo (with Zn(II) in the invariant Zn1 site and Co(II) in the Zn2 site) analog of MBL L1 was prepared by using a biological incorporation method. Extended X-ray Absorption Fine Structure (EXAFS) spectroscopic studies were used to confirm that the ZnCo analog was prepared. To study the roles of the Zn(II) and Co(II) ions during catalysis, rapid freeze quench (RFQ)-EXAFS studies were used to probe the reaction of the ZnCo-L1 analog with chromacef when quenched at 10 ms, 50 ms, and 100 ms. The L1-product complex was also analyzed with EXAFS spectroscopy. The data show that the Zn-Co distance is 3.49 Å in the resting enzyme and that this distance increases by 0.3 Å in the sample that was quenched at 10 ms. The average Zn-Co distance decreases at the other time points until reaching a distance of 3.58 Å in the L1-product complex. The data also show that a Co-S interaction is present in the 100 ms quenched sample and in the L1-product complex, which suggests that there is a significant rearrangement of product in the active site.
Collapse
Affiliation(s)
- Mahesh Aitha
- Department of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, USA
| | - Sameer Al-Adbul-Wahid
- Department of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, USA
| | - David L Tierney
- Department of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, USA
| | - Michael W Crowder
- Department of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, USA
| |
Collapse
|
7
|
Tierney DL, Schenk G. X-ray absorption spectroscopy of dinuclear metallohydrolases. Biophys J 2015; 107:1263-72. [PMID: 25229134 DOI: 10.1016/j.bpj.2014.07.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/14/2014] [Accepted: 07/24/2014] [Indexed: 12/26/2022] Open
Abstract
In this mini-review, we briefly discuss the physical origin of x-ray absorption spectroscopy (XAS) before illustrating its application using dinuclear metallohydrolases as exemplary systems. The systems we have selected for illustrative purposes present a challenging problem for XAS, one that is ideal to demonstrate the potential of this methodology for structure/function studies of metalloenzymes in general. When the metal ion is redox active, XAS provides a sensitive measure of oxidation-state-dependent differences. When the metal ion is zinc, XAS is the only spectroscopic method that will provide easily accessible structural information in solution. In the case of heterodimetallic sites, XAS has the unique ability to interrogate each metal site independently in the same sample. One of the strongest advantages of XAS is its ability to examine metal ion site structures with crystallographic precision, without the need for a crystal. This is key for studying flexible metal ion sites, such as those described in the selected examples, because it allows one to monitor structural changes that occur during substrate turnover.
Collapse
Affiliation(s)
- David L Tierney
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio.
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
8
|
Aitha M, Marts AR, Bergstrom A, Møller A, Moritz L, Turner L, Nix JC, Bonomo RA, Page RC, Tierney DL, Crowder MW. Biochemical, mechanistic, and spectroscopic characterization of metallo-β-lactamase VIM-2. Biochemistry 2014; 53:7321-31. [PMID: 25356958 PMCID: PMC4245990 DOI: 10.1021/bi500916y] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/10/2014] [Indexed: 11/29/2022]
Abstract
This study examines metal binding to metallo-β-lactamase VIM-2, demonstrating the first successful preparation of a Co(II)-substituted VIM-2 analogue. Spectroscopic studies of the half- and fully metal loaded enzymes show that both Zn(II) and Co(II) bind cooperatively, where the major species present, regardless of stoichiometry, are apo- and di-Zn (or di-Co) enzymes. We determined the di-Zn VIM-2 structure to a resolution of 1.55 Å, and this structure supports results from spectroscopic studies. Kinetics, both steady-state and pre-steady-state, show that VIM-2 utilizes a mechanism that proceeds through a very short-lived anionic intermediate when chromacef is used as the substrate. Comparison with other B1 enzymes shows that those that bind Zn(II) cooperatively are better poised to protonate the intermediate on its formation, compared to those that bind Zn(II) non-cooperatively, which uniformly build up substantial amounts of the intermediate.
Collapse
Affiliation(s)
- Mahesh Aitha
- Department
of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, United States
| | - Amy R. Marts
- Department
of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, United States
| | - Alex Bergstrom
- Department
of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, United States
| | - Abraham
Jon Møller
- Department
of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, United States
| | - Lindsay Moritz
- Department
of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, United States
| | - Lucien Turner
- Department
of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, United States
| | - Jay C. Nix
- Molecular
Biology Consortium, Beamline 4.2.2, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Robert A. Bonomo
- Research
Service, Louis Stokes Cleveland Department
of Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, Ohio 44106, United
States
- Department
of Medicine, Pharmacology, and Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Richard C. Page
- Department
of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, United States
| | - David L. Tierney
- Department
of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, United States
| | - Michael W. Crowder
- Department
of Chemistry and Biochemistry, Miami University, 650 East High Street, Oxford, Ohio 45056, United States
| |
Collapse
|
9
|
Lykhin AO, Novikova GV, Kuzubov AA, Staloverova NA, Sarmatova NI, Varganov SA, Krasnov PO. A complex of ceftriaxone with Pb(II): synthesis, characterization, and antibacterial activity study. J COORD CHEM 2014. [DOI: 10.1080/00958972.2014.938065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Aleksandr O. Lykhin
- Department of Chemistry, Siberian Federal University, Krasnoyarsk, Russia
- Information Sciences and Telecommunication Institute, Siberian State Aerospace University, Krasnoyarsk, Russia
| | - Galina V. Novikova
- Department of Chemistry, Siberian Federal University, Krasnoyarsk, Russia
| | - Alexander A. Kuzubov
- Department of Chemistry, Siberian Federal University, Krasnoyarsk, Russia
- L.V. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
- Department of Physics, Siberian State Technological University, Krasnoyarsk, Russia
| | | | | | | | - Pavel O. Krasnov
- Department of Physics, Siberian State Technological University, Krasnoyarsk, Russia
| |
Collapse
|
10
|
Yang H, Aitha M, Marts AR, Hetrick A, Bennett B, Crowder MW, Tierney DL. Spectroscopic and mechanistic studies of heterodimetallic forms of metallo-β-lactamase NDM-1. J Am Chem Soc 2014; 136:7273-85. [PMID: 24754678 PMCID: PMC4046764 DOI: 10.1021/ja410376s] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Indexed: 11/29/2022]
Abstract
In an effort to characterize the roles of each metal ion in metallo-β-lactamase NDM-1, heterodimetallic analogues (CoCo-, ZnCo-, and CoCd-) of the enzyme were generated and characterized. UV-vis, (1)H NMR, EPR, and EXAFS spectroscopies were used to confirm the fidelity of the metal substitutions, including the presence of a homogeneous, heterodimetallic cluster, with a single-atom bridge. This marks the first preparation of a metallo-β-lactamase selectively substituted with a paramagnetic metal ion, Co(II), either in the Zn1 (CoCd-NDM-1) or in the Zn2 site (ZnCo-NDM-1), as well as both (CoCo-NDM-1). We then used these metal-substituted forms of the enzyme to probe the reaction mechanism, using steady-state and stopped-flow kinetics, stopped-flow fluorescence, and rapid-freeze-quench EPR. Both metal sites show significant effects on the kinetic constants, and both paramagnetic variants (CoCd- and ZnCo-NDM-1) showed significant structural changes on reaction with substrate. These changes are discussed in terms of a minimal kinetic mechanism that incorporates all of the data.
Collapse
Affiliation(s)
- Hao Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Mahesh Aitha
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Amy R. Marts
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Alyssa Hetrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Brian Bennett
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Michael W. Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - David L. Tierney
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
11
|
Abriata LA. Investigation of non-corrin cobalt(II)-containing sites in protein structures of the Protein Data Bank. ACTA CRYSTALLOGRAPHICA SECTION B STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS 2013. [DOI: 10.1107/s0108768113002954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|