1
|
Waszkiewicz R, Michaś A, Białobrzewski MK, Klepka BP, Cieplak-Rotowska MK, Staszałek Z, Cichocki B, Lisicki M, Szymczak P, Niedzwiecka A. Hydrodynamic Radii of Intrinsically Disordered Proteins: Fast Prediction by Minimum Dissipation Approximation and Experimental Validation. J Phys Chem Lett 2024; 15:5024-5033. [PMID: 38696815 PMCID: PMC11103702 DOI: 10.1021/acs.jpclett.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
The diffusion coefficients of globular and fully unfolded proteins can be predicted with high accuracy solely from their mass or chain length. However, this approach fails for intrinsically disordered proteins (IDPs) containing structural domains. We propose a rapid predictive methodology for estimating the diffusion coefficients of IDPs. The methodology uses accelerated conformational sampling based on self-avoiding random walks and includes hydrodynamic interactions between coarse-grained protein subunits, modeled using the generalized Rotne-Prager-Yamakawa approximation. To estimate the hydrodynamic radius, we rely on the minimum dissipation approximation recently introduced by Cichocki et al. Using a large set of experimentally measured hydrodynamic radii of IDPs over a wide range of chain lengths and domain contributions, we demonstrate that our predictions are more accurate than the Kirkwood approximation and phenomenological approaches. Our technique may prove to be valuable in predicting the hydrodynamic properties of both fully unstructured and multidomain disordered proteins.
Collapse
Affiliation(s)
- Radost Waszkiewicz
- Institute
of Theoretical Physics, Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-093 Warsaw, Poland
| | - Agnieszka Michaś
- Institute
of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| | - Michał K. Białobrzewski
- Institute
of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| | - Barbara P. Klepka
- Institute
of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| | | | - Zuzanna Staszałek
- Institute
of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| | - Bogdan Cichocki
- Institute
of Theoretical Physics, Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-093 Warsaw, Poland
| | - Maciej Lisicki
- Institute
of Theoretical Physics, Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-093 Warsaw, Poland
| | - Piotr Szymczak
- Institute
of Theoretical Physics, Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-093 Warsaw, Poland
| | - Anna Niedzwiecka
- Institute
of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
| |
Collapse
|
2
|
Bochtler M. X-rays, electrons, and neutrons as probes of atomic matter. Structure 2024; 32:630-643.e6. [PMID: 38412856 DOI: 10.1016/j.str.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/21/2023] [Accepted: 01/31/2024] [Indexed: 02/29/2024]
Abstract
X-rays, electrons, and neutrons probe different properties of matter. X-rays feel electron density (ED). Electrons sense the electrostatic potential (ESP) of electrons and nuclei. Neutrons are sensitive to nuclear coherent scattering length (NCSL). While NCSL maps are widely understood to be different, ED and ESP maps are tacitly assumed to be similar. Here, I show that the belief in ED and ESP map equivalence is mistaken, but contains a grain of truth. Using density functional theory (DFT), the Bethe-Mott (BM) relation, and the Thomas-Fermi (TF) and Cromer-Mann (CM) atomic models, I show that ED and ESP maps are indeed more similar to each other than to NCSL maps. Nevertheless, peak and integrated map values depend differently on the atomic order number and on the contributions from electrons in the inner and outer CM shells. ED and ESP maps also differ in the sign and relative magnitude of excess charge effects.
Collapse
Affiliation(s)
- Matthias Bochtler
- IIMCB, Trojdena 4, 02-109 Warsaw, Poland; Polish Academy of Sciences, IBB, Pawinskiego 5a, 02-106 Warsaw, Poland.
| |
Collapse
|
3
|
Bassotti E, Gabrielli S, Paradossi G, Chiessi E, Telling M. An experimentally representative in-silico protocol for dynamical studies of lyophilised and weakly hydrated amorphous proteins. Commun Chem 2024; 7:83. [PMID: 38609466 PMCID: PMC11014950 DOI: 10.1038/s42004-024-01167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Characterization of biopolymers in both dry and weakly hydrated amorphous states has implications for the pharmaceutical industry since it provides understanding of the effect of lyophilisation on stability and biological activity. Atomistic Molecular Dynamics (MD) simulations probe structural and dynamical features related to system functionality. However, while simulations in homogenous aqueous environments are routine, dehydrated model assemblies are a challenge with systems investigated in-silico needing careful consideration; simulated systems potentially differing markedly despite seemingly negligible changes in procedure. Here we propose an in-silico protocol to model proteins in lyophilised and weakly hydrated amorphous states that is both more experimentally representative and routinely applicable. Since the outputs from MD align directly with those accessed by neutron scattering, the efficacy of the simulation protocol proposed is shown by validating against experimental neutron data for apoferritin and insulin. This work also highlights that without cooperative experimental and simulative data, development of simulative procedures using MD alone would prove most challenging.
Collapse
Affiliation(s)
- Elisa Bassotti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica I, 00133, Rome, Italy
| | - Sara Gabrielli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica I, 00133, Rome, Italy
| | - Gaio Paradossi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica I, 00133, Rome, Italy
| | - Ester Chiessi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica I, 00133, Rome, Italy.
| | - Mark Telling
- STFC, ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11OQX, UK.
- Department of Materials, University of Oxford, Parks Road, Oxford, UK.
| |
Collapse
|
4
|
Nirmalraj PN, Rossell MD, Dachraoui W, Thompson D, Mayer M. In Situ Observation of Chemically Induced Protein Denaturation at Solvated Interfaces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48015-48026. [PMID: 37797325 PMCID: PMC10591235 DOI: 10.1021/acsami.3c10510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
Proteins unfold in chaotropic salt solutions, a process that is difficult to observe at the single protein level. The work presented here demonstrates that a liquid-based atomic force microscope and graphene liquid-cell-based scanning transmission electron microscope make it possible to observe chemically induced protein unfolding. To illustrate this capability, ferritin proteins were deposited on a graphene surface, and the concentration-dependent urea- or guanidinium-induced changes of morphology were monitored for holo-ferritin with its ferrihydrite core as well as apo-ferritin without this core. Depending on the chaotropic agent the liquid-based imaging setup captured an unexpected transformation of natively folded holo-ferritin proteins into rings after urea treatment but not after guanidinium treatment. Urea treatment of apo-ferritin did not result in nanorings, confirming that nanorings are a specific signature of denaturation of holo-ferritins after exposture to sufficiently high urea concentrations. Mapping the in situ images with molecular dynamics simulations of ferritin subunits in urea solutions suggests that electrostatic destabilization triggers denaturation of ferritin as urea makes direct contact with the protein and also disrupts the water H-bonding network in the ferritin solvation shell. Our findings deepen the understanding of protein denaturation studied using label-free techniques operating at the solid-liquid interface.
Collapse
Affiliation(s)
- Peter Niraj Nirmalraj
- Transport
at Nanoscale Interfaces Laboratory, Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Marta D. Rossell
- Electron
Microscopy Center, Swiss Federal Laboratories
for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Walid Dachraoui
- Electron
Microscopy Center, Swiss Federal Laboratories
for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Damien Thompson
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94T9PX, Ireland
| | - Michael Mayer
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| |
Collapse
|
5
|
Yin V, Devine PWA, Saunders JC, Barendregt A, Cusdin F, Ristani A, Hines A, Shepherd S, Dembek M, Dobson CL, Snijder J, Bond NJ, Heck AJR. Stochastic assembly of biomacromolecular complexes: impact and implications on charge interpretation in native mass spectrometry. Chem Sci 2023; 14:9316-9327. [PMID: 37712025 PMCID: PMC10498669 DOI: 10.1039/d3sc03228k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023] Open
Abstract
Native mass spectrometry is a potent method for characterizing biomacromolecular assemblies. A critical aspect to extracting accurate mass information is the correct inference of the ion ensemble charge states. While a variety of experimental strategies and algorithms have been developed to facilitate this, virtually all approaches rely on the implicit assumption that any peaks in a native mass spectrum can be directly attributed to an underlying charge state distribution. Here, we demonstrate that this paradigm breaks down for several types of macromolecular protein complexes due to the intrinsic heterogeneity induced by the stochastic nature of their assembly. Utilizing several protein assemblies of adeno-associated virus capsids and ferritin, we demonstrate that these particles can produce a variety of unexpected spectral appearances, some of which appear superficially similar to a resolved charge state distribution. When interpreted using conventional charge inference strategies, these distorted spectra can lead to substantial errors in the calculated mass (up to ∼5%). We provide a novel analytical framework to interpret and extract mass information from these spectra by combining high-resolution native mass spectrometry, single particle Orbitrap-based charge detection mass spectrometry, and sophisticated spectral simulations based on a stochastic assembly model. We uncover that these mass spectra are extremely sensitive to not only mass heterogeneity within the subunits, but also to the magnitude and width of their charge state distributions. As we postulate that many protein complexes assemble stochastically, this framework provides a generalizable solution, further extending the usability of native mass spectrometry in the characterization of biomacromolecular assemblies.
Collapse
Affiliation(s)
- Victor Yin
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
- Netherlands Proteomics Center Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Paul W A Devine
- Analytical Sciences, Biopharmaceutical Development, R & D, AstraZeneca Granta Park Cambridge UK
| | - Janet C Saunders
- In Vivo Expressed Biologics, Discovery Sciences, R & D, AstraZeneca Granta Park Cambridge UK
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
- Netherlands Proteomics Center Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Fiona Cusdin
- In Vivo Expressed Biologics, Discovery Sciences, R & D, AstraZeneca Granta Park Cambridge UK
| | - Alexandra Ristani
- In Vivo Expressed Biologics, Discovery Sciences, R & D, AstraZeneca Granta Park Cambridge UK
| | - Alistair Hines
- Analytical Sciences, Biopharmaceutical Development, R & D, AstraZeneca Granta Park Cambridge UK
| | - Sam Shepherd
- Analytical Sciences, Biopharmaceutical Development, R & D, AstraZeneca Granta Park Cambridge UK
| | - Marcin Dembek
- Purification Process Sciences, Biopharmaceutical Development, R & D, AstraZeneca Granta Park Cambridge UK
| | - Claire L Dobson
- In Vivo Expressed Biologics, Discovery Sciences, R & D, AstraZeneca Granta Park Cambridge UK
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
- Netherlands Proteomics Center Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Nicholas J Bond
- Analytical Sciences, Biopharmaceutical Development, R & D, AstraZeneca Granta Park Cambridge UK
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
- Netherlands Proteomics Center Padualaan 8, 3584 CH Utrecht The Netherlands
| |
Collapse
|
6
|
Pothineni BK, Kollmann S, Li X, Grundmeier G, Erb DJ, Keller A. Adsorption of Ferritin at Nanofaceted Al 2O 3 Surfaces. Int J Mol Sci 2023; 24:12808. [PMID: 37628990 PMCID: PMC10454126 DOI: 10.3390/ijms241612808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The influence of nanoscale surface topography on protein adsorption is highly important for numerous applications in medicine and technology. Herein, ferritin adsorption at flat and nanofaceted, single-crystalline Al2O3 surfaces is investigated using atomic force microscopy and X-ray photoelectron spectroscopy. The nanofaceted surfaces are generated by the thermal annealing of Al2O3 wafers at temperatures above 1000 °C, which leads to the formation of faceted saw-tooth-like surface topographies with periodicities of about 160 nm and amplitudes of about 15 nm. Ferritin adsorption at these nanofaceted surfaces is notably suppressed compared to the flat surface at a concentration of 10 mg/mL, which is attributed to lower adsorption affinities of the newly formed facets. Consequently, adsorption is restricted mostly to the pattern grooves, where the proteins can maximize their contact area with the surface. However, this effect depends on the protein concentration, with an inverse trend being observed at 30 mg/mL. Furthermore, different ferritin adsorption behavior is observed at topographically similar nanofacet patterns fabricated at different annealing temperatures and attributed to different step and kink densities. These results demonstrate that while protein adsorption at solid surfaces can be notably affected by nanofacet patterns, fine-tuning protein adsorption in this way requires the precise control of facet properties.
Collapse
Affiliation(s)
- Bhanu K. Pothineni
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany; (B.K.P.); (S.K.); (X.L.); (G.G.)
| | - Sabrina Kollmann
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany; (B.K.P.); (S.K.); (X.L.); (G.G.)
| | - Xinyang Li
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany; (B.K.P.); (S.K.); (X.L.); (G.G.)
| | - Guido Grundmeier
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany; (B.K.P.); (S.K.); (X.L.); (G.G.)
| | - Denise J. Erb
- Ion Beam Center, Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany; (B.K.P.); (S.K.); (X.L.); (G.G.)
| |
Collapse
|
7
|
Labra-Muñoz JA, de Reuver A, Koeleman F, Huber M, van der Zant HSJ. Ferritin-Based Single-Electron Devices. Biomolecules 2022; 12:biom12050705. [PMID: 35625632 PMCID: PMC9138424 DOI: 10.3390/biom12050705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/26/2022] Open
Abstract
We report on the fabrication of single-electron devices based on horse-spleen ferritin particles. At low temperatures the current vs. voltage characteristics are stable, enabling the acquisition of reproducible data that establishes the Coulomb blockade as the main transport mechanism through them. Excellent agreement between the experimental data and the Coulomb blockade theory is demonstrated. Single-electron charge transport in ferritin, thus, establishes a route for further characterization of their, e.g., magnetic, properties down to the single-particle level, with prospects for electronic and medical applications.
Collapse
Affiliation(s)
- Jacqueline A. Labra-Muñoz
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2300 RA Leiden, The Netherlands;
- Kavli Institute of Nanoscience, Delft University of Technology, Orentzweg 1, 2628 CJ Delft, The Netherlands; (A.d.R.); (F.K.)
- Correspondence: (J.A.L.-M.); (H.S.J.v.d.Z.)
| | - Arie de Reuver
- Kavli Institute of Nanoscience, Delft University of Technology, Orentzweg 1, 2628 CJ Delft, The Netherlands; (A.d.R.); (F.K.)
| | - Friso Koeleman
- Kavli Institute of Nanoscience, Delft University of Technology, Orentzweg 1, 2628 CJ Delft, The Netherlands; (A.d.R.); (F.K.)
| | - Martina Huber
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2300 RA Leiden, The Netherlands;
| | - Herre S. J. van der Zant
- Kavli Institute of Nanoscience, Delft University of Technology, Orentzweg 1, 2628 CJ Delft, The Netherlands; (A.d.R.); (F.K.)
- Correspondence: (J.A.L.-M.); (H.S.J.v.d.Z.)
| |
Collapse
|
8
|
Engstrom T, Clinger JA, Spoth KA, Clarke OB, Closs DS, Jayne R, Apker BA, Thorne RE. High-resolution single-particle cryo-EM of samples vitrified in boiling nitro-gen. IUCRJ 2021; 8:867-877. [PMID: 34804541 PMCID: PMC8562666 DOI: 10.1107/s2052252521008095] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/05/2021] [Indexed: 05/24/2023]
Abstract
Based on work by Dubochet and others in the 1980s and 1990s, samples for single-particle cryo-electron microscopy (cryo-EM) have been vitrified using ethane, propane or ethane/propane mixtures. These liquid cryogens have a large difference between their melting and boiling temperatures and so can absorb substantial heat without formation of an insulating vapor layer adjacent to a cooling sample. However, ethane and propane are flammable, they must be liquified in liquid nitro-gen immediately before cryo-EM sample preparation, and cryocooled samples must be transferred to liquid nitro-gen for storage, complicating workflows and increasing the chance of sample damage during handling. Experiments over the last 15 years have shown that cooling rates required to vitrify pure water are only ∼250 000 K s-1, at the low end of earlier estimates, and that the dominant factor that has limited cooling rates of small samples in liquid nitro-gen is sample precooling in cold gas present above the liquid cryogen surface, not the Leidenfrost effect. Using an automated cryocooling instrument developed for cryocrystallography that combines high plunge speeds with efficient removal of cold gas, we show that single-particle cryo-EM samples on commercial grids can be routinely vitrified using only boiling nitro-gen and obtain apoferritin datasets and refined structures with 2.65 Å resolution. The use of liquid nitro-gen as the primary coolant may allow manual and automated workflows to be simplified and may reduce sample stresses that contribute to beam-induced motion.
Collapse
Affiliation(s)
| | | | - Katherine A. Spoth
- Cornell Center for Materials Research, Cornell University, Ithaca, NY 14853, USA
| | - Oliver B. Clarke
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Anesthesiology, Columbia University, New York, NY 10032, USA
| | | | - Richard Jayne
- MiTeGen, LLC, PO Box 3867, Ithaca, NY 14850-3867, USA
| | | | - Robert E. Thorne
- MiTeGen, LLC, PO Box 3867, Ithaca, NY 14850-3867, USA
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Kaku TS, Lim S. Protein nanoparticles in molecular, cellular, and tissue imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1714. [PMID: 33821568 DOI: 10.1002/wnan.1714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/12/2021] [Accepted: 03/08/2021] [Indexed: 01/10/2023]
Abstract
The quest to develop ideal nanoparticles capable of molecular, cellular, and tissue level imaging is ongoing. Since certain imaging probes and nanoparticles face drawbacks such as low aqueous solubility, increased ROS generation leading to DNA damage, apoptosis, and high cellular/organ toxicities, the development of versatile and biocompatible nanocarriers becomes necessary. Protein nanoparticles (PNPs) are one such promising class of nanocarriers that possess most of the desirable properties of an ideal nanocarrier for bioimaging applications. PNPs demonstrate high aqueous solubility, minimal cytotoxicity, and multi-cargo loading capacity. They are also amenable to surface-functionalization, as well as modulation of their hydrophobicity and hydrophilicity. The use of PNPs for bioimaging applications has made rapid advancements in the past two decades. Being comparatively less explored, the field opens up a plethora of opportunities and focus areas to engineer ideal bioimaging protein nanocarriers. The use of PNPs as carriers of their natural ligands as well as other heavy metals and fluorescent probes, along with drug molecules for combined theranostic applications has been reported. In addition, surface functionalization to impart specificity of targeting the PNPs has been shown to reduce nonspecific cellular interactions, thus reducing systemic toxicity. PNPs have been explored for their application in imaging of numerous cancers, cardiovascular diseases as well as imaging of the brain using near infrared fluorescence (NIRF) imaging, magnetic resonance imaging (MRI), X-ray computed tomography (CT), positron emission tomography (PET), single-photon emission computed tomography (SPECT), ultrasound (US), and photoacoustic (PA) imaging. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Tanvi Sushil Kaku
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
10
|
Wieferig JP, Mills DJ, Kühlbrandt W. Devitrification reduces beam-induced movement in cryo-EM. IUCRJ 2021; 8:186-194. [PMID: 33708396 PMCID: PMC7924229 DOI: 10.1107/s2052252520016243] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/15/2020] [Indexed: 05/31/2023]
Abstract
As cryo-EM approaches the physical resolution limits imposed by electron optics and radiation damage, it becomes increasingly urgent to address the issues that impede high-resolution structure determination of biological specimens. One of the persistent problems has been beam-induced movement, which occurs when the specimen is irradiated with high-energy electrons. Beam-induced movement results in image blurring and loss of high-resolution information. It is particularly severe for biological samples in unsupported thin films of vitreous water. By controlled devitrification of conventionally plunge-frozen samples, the suspended film of vitrified water was converted into cubic ice, a polycrystalline, mechanically stable solid. It is shown that compared with vitrified samples, devitrification reduces beam-induced movement in the first 5 e Å-2 of an exposure by a factor of ∼4, substantially enhancing the contribution of the initial, minimally damaged frames to a structure. A 3D apoferritin map reconstructed from the first frames of 20 000 particle images of devitrified samples resolved undamaged side chains. Devitrification of frozen-hydrated specimens helps to overcome beam-induced specimen motion in single-particle cryo-EM, as a further step towards realizing the full potential of cryo-EM for high-resolution structure determination.
Collapse
Affiliation(s)
- Jan-Philip Wieferig
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Deryck J. Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| |
Collapse
|
11
|
Le Vay K, Carter BM, Watkins DW, Dora Tang TY, Ting VP, Cölfen H, Rambo RP, Smith AJ, Ross Anderson JL, Perriman AW. Controlling Protein Nanocage Assembly with Hydrostatic Pressure. J Am Chem Soc 2020; 142:20640-20650. [PMID: 33252237 DOI: 10.1021/jacs.0c07285] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Controlling the assembly and disassembly of nanoscale protein cages for the capture and internalization of protein or non-proteinaceous components is fundamentally important to a diverse range of bionanotechnological applications. Here, we study the reversible, pressure-induced dissociation of a natural protein nanocage, E. coli bacterioferritin (Bfr), using synchrotron radiation small-angle X-ray scattering (SAXS) and circular dichroism (CD). We demonstrate that hydrostatic pressures of 450 MPa are sufficient to completely dissociate the Bfr 24-mer into protein dimers, and the reversibility and kinetics of the reassembly process can be controlled by selecting appropriate buffer conditions. We also demonstrate that the heme B prosthetic group present at the subunit dimer interface influences the stability and pressure lability of the cage, despite its location being discrete from the interdimer interface that is key to cage assembly. This indicates a major cage-stabilizing role for heme within this family of ferritins.
Collapse
Affiliation(s)
- Kristian Le Vay
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, U.K
| | - Ben M Carter
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Daniel W Watkins
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - T-Y Dora Tang
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Valeska P Ting
- Bristol Composites Institute (ACCIS), Department of Mechanical Engineering, University of Bristol, Queen's Building, Bristol BS8 1TR, U.K
| | - Helmut Cölfen
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Robert P Rambo
- Diamond House, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Fermi Ave., Didcot OX11 0DE, U.K
| | - Andrew J Smith
- Diamond House, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Fermi Ave., Didcot OX11 0DE, U.K
| | - J L Ross Anderson
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, U.K
| | - Adam W Perriman
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| |
Collapse
|
12
|
Zhang C, Zhang X, Zhao G. Ferritin Nanocage: A Versatile Nanocarrier Utilized in the Field of Food, Nutrition, and Medicine. NANOMATERIALS 2020; 10:nano10091894. [PMID: 32971961 PMCID: PMC7557750 DOI: 10.3390/nano10091894] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022]
Abstract
Compared with other nanocarriers such as liposomes, mesoporous silica, and cyclodextrin, ferritin as a typical protein nanocage has received considerable attention in the field of food, nutrition, and medicine owing to its inherent cavity size, excellent water solubility, and biocompatibility. Additionally, ferritin nanocage also serves as a versatile bio-template for the synthesis of a variety of nanoparticles. Recently, scientists have explored the ferritin nanocage structure for encapsulation and delivery of guest molecules such as nutrients, bioactive molecules, anticancer drugs, and mineral metal ions by taking advantage of its unique reversible disassembly and reassembly property and biomineralization. In this review, we mainly focus on the preparation and structure of ferritin-based nanocarriers, and regulation of their self-assembly. Moreover, the recent advances of their applications in food nutrient delivery and medical diagnostics are highlighted. Finally, the main challenges and future development in ferritin-directed nanoparticles’ synthesis and multifunctional applications are discussed.
Collapse
|
13
|
Moreau DW, Atakisi H, Thorne RE. Solvent flows, conformation changes and lattice reordering in a cold protein crystal. Acta Crystallogr D Struct Biol 2019; 75:980-994. [PMID: 31692472 PMCID: PMC6834080 DOI: 10.1107/s2059798319013822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/10/2019] [Indexed: 11/10/2022] Open
Abstract
When protein crystals are abruptly cooled, the unit-cell, protein and solvent-cavity volumes all contract, but the volume of bulk-like internal solvent may expand. Outflow of this solvent from the unit cell and its accumulation in defective interior crystal regions has been suggested as one cause of the large increase in crystal mosaicity on cooling. It is shown that when apoferritin crystals are abruptly cooled to temperatures between 220 and 260 K, the unit cell contracts, solvent is pushed out and the mosaicity grows. On temperature-dependent timescales of 10 to 200 s, the unit-cell and solvent-cavity volume then expand, solvent flows back in, and the mosaicity and B factor both drop. Expansion and reordering at fixed low temperature are associated with small-amplitude but large-scale changes in the conformation and packing of apoferritin. These results demonstrate that increases in mosaicity on cooling arise due to solvent flows out of or into the unit cell and to incomplete, arrested relaxation of protein conformation. They indicate a critical role for time in variable-temperature crystallographic studies, and the feasibility of probing interactions and cooperative conformational changes that underlie cold denaturation in the presence of liquid solvent at temperatures down to ∼200 K.
Collapse
Affiliation(s)
- David W. Moreau
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | - Hakan Atakisi
- Physics Department, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
14
|
Abstract
Single-particle electron cryomicroscopy (cryoEM) has now proved to be the method of choice for determining the structure of biological macromolecules and complexes. Yet success in determining a structure by cryoEM depends on being able to prepare a frozen specimen on a small metal support called a grid. This process is poorly controlled at present because of molecule–surface interactions. Here we used a modified form of graphene, in conjunction with a stable grid made of gold, to control these surface effects. Functionalized graphene-on-gold grids improve the reliability of specimen preparation and enhance image quality. This technology has the potential to take specimen preparation for cryoEM from a trial and error art to a controlled and reproducible process. With recent technological advances, the atomic resolution structure of any purified biomolecular complex can, in principle, be determined by single-particle electron cryomicroscopy (cryoEM). In practice, the primary barrier to structure determination is the preparation of a frozen specimen suitable for high-resolution imaging. To address this, we present a multifunctional specimen support for cryoEM, comprising large-crystal monolayer graphene suspended across the surface of an ultrastable gold specimen support. Using a low-energy plasma surface modification system, we tune the surface of this support to the specimen by patterning a range of covalent functionalizations across the graphene layer on a single grid. This support design reduces specimen movement during imaging, improves image quality, and allows high-resolution structure determination with a minimum of material and data.
Collapse
|
15
|
Zivanov J, Nakane T, Forsberg BO, Kimanius D, Hagen WJ, Lindahl E, Scheres SH. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 2018; 7:42166. [PMID: 30412051 PMCID: PMC6250425 DOI: 10.7554/elife.42166] [Citation(s) in RCA: 3249] [Impact Index Per Article: 541.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/06/2018] [Indexed: 12/28/2022] Open
Abstract
Here, we describe the third major release of RELION. CPU-based vector acceleration has been added in addition to GPU support, which provides flexibility in use of resources and avoids memory limitations. Reference-free autopicking with Laplacian-of-Gaussian filtering and execution of jobs from python allows non-interactive processing during acquisition, including 2D-classification, de novo model generation and 3D-classification. Per-particle refinement of CTF parameters and correction of estimated beam tilt provides higher resolution reconstructions when particles are at different heights in the ice, and/or coma-free alignment has not been optimal. Ewald sphere curvature correction improves resolution for large particles. We illustrate these developments with publicly available data sets: together with a Bayesian approach to beam-induced motion correction it leads to resolution improvements of 0.2–0.7 Å compared to previous RELION versions.
Collapse
Affiliation(s)
- Jasenko Zivanov
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Takanori Nakane
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Björn O Forsberg
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Dari Kimanius
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Wim Jh Hagen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Cryo-Electron Microscopy Service Platform, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Erik Lindahl
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.,Department of Applied Physics, Swedish e-Science Research Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | | |
Collapse
|
16
|
Medium throughput cage state stability screen of conditions for the generation of gold nanoparticles encapsulated within a mini-ferritin. Bioorg Med Chem 2018; 26:5253-5258. [DOI: 10.1016/j.bmc.2018.03.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/15/2018] [Accepted: 03/23/2018] [Indexed: 12/26/2022]
|
17
|
Stagg SM, Mendez JH. Processing apoferritin with the Appion pipeline. J Struct Biol 2018; 204:85-89. [PMID: 29969662 DOI: 10.1016/j.jsb.2018.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/08/2018] [Accepted: 06/29/2018] [Indexed: 01/26/2023]
Abstract
The 3DEM map challenge provided an opportunity to test different algorithms and workflows for processing single particle cryo-EM data. We were interested in testing whether we could use the standard Appion workflow with minimal manual intervention to achieve similar or better resolution than other challengers. Another question we were interested in testing was what the influence of particle sorting and elimination would be on the resolution and quality of 3D reconstructions. Since apoferritin is historically a challenging particle for single particle reconstruction and the authors of the original map challenge data used only a fraction of the particles present in the dataset, we focused on the apoferritin dataset for our entry. We submitted a 3.7 Å map from 25,844 particles and a 3.6 Å map from 53,334 particles and after assessment were among the best of the apoferritin maps that were submitted. Here we present the details of our reconstruction strategy and compare our strategy to that of another high-scoring apoferritin map. Altogether, our results suggest that for a relatively conformationally homogeneous particle like apoferritin, including as many particles as possible after elimination of junk leads to the highest resolution, and the choice of parameters for custom mask creation can lead to subtle but significant changes in the resolution of 3D reconstructions.
Collapse
Affiliation(s)
- Scott M Stagg
- Institute of Molecular Biophysics, 91 Chieftain Way, Florida State University, Tallahassee, FL 32306, United States; Department of Chemistry and Biochemistry, 95 Chieftain Way, Florida State University, Tallahassee, FL 32306, United States.
| | - Joshua H Mendez
- Department of Physics, 77 Chieftan Way, Tallahassee, FL 32306, United States
| |
Collapse
|
18
|
Zabelskii DV, Vlasov AV, Ryzhykau YL, Murugova TN, Brennich M, Soloviov DV, Ivankov OI, Borshchevskiy VI, Mishin AV, Rogachev AV, Round A, Dencher NA, Büldt G, Gordeliy VI, Kuklin AI. Ambiguities and completeness of SAS data analysis: investigations of apoferritin by SAXS/SANS EID and SEC-SAXS methods. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1742-6596/994/1/012017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Zanzoni S, Pagano K, D'Onofrio M, Assfalg M, Ciambellotti S, Bernacchioni C, Turano P, Aime S, Ragona L, Molinari H. Unsaturated Long-Chain Fatty Acids Are Preferred Ferritin Ligands That Enhance Iron Biomineralization. Chemistry 2017; 23:9879-9887. [PMID: 28489257 DOI: 10.1002/chem.201701164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Indexed: 12/20/2022]
Abstract
Ferritin is a ubiquitous nanocage protein, which can accommodate up to thousands of iron atoms inside its cavity. Aside from its iron storage function, a new role as a fatty acid binder has been proposed for this protein. The interaction of apo horse spleen ferritin (HoSF) with a variety of lipids has been here investigated through NMR spectroscopic ligand-based experiments, to provide new insights into the mechanism of ferritin-lipid interactions, and the link with iron mineralization. 1D 1 H, diffusion (DOSY) and saturation-transfer difference (STD) NMR experiments provided evidence for a stronger interaction of ferritin with unsaturated fatty acids compared to saturated fatty acids, detergents, and bile acids. Mineralization assays showed that oleate c aused the most efficient increase in the initial rate of iron oxidation, and the highest formation of ferric species in HoSF. The comprehension of the factors inducing a faster biomineralization is an issue of the utmost importance, given the association of ferritin levels with metabolic syndromes, such as insulin resistance and diabetes, characterized by fatty acid concentration dysregulation. The human ferritin H-chain homopolymer (HuHF), featuring ferroxidase activity, was also tested for its fatty acid binding capabilities. Assays show that oleate can bind with high affinity to HuHF, without altering the reaction rates at the ferroxidase site.
Collapse
Affiliation(s)
- Serena Zanzoni
- NMR Laboratory, Biotechnology Department, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Katiuscia Pagano
- Istituto per lo Studio delle Macromolecole, CNR, Via Corti 12, 20133, Milano, Italy
| | - Mariapina D'Onofrio
- NMR Laboratory, Biotechnology Department, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Michael Assfalg
- NMR Laboratory, Biotechnology Department, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Silvia Ciambellotti
- Dipartimento di Chimica, Università di Firenze, Via Della Lastruccia 3, Sesto Fiorentino, 50019, Firenze, Italy.,CERM, Università di Firenze, Via L. Sacconi 6, Sesto Fiorentino, 50019, Firenze, Italy
| | - Caterina Bernacchioni
- Dipartimento di Chimica, Università di Firenze, Via Della Lastruccia 3, Sesto Fiorentino, 50019, Firenze, Italy.,CERM, Università di Firenze, Via L. Sacconi 6, Sesto Fiorentino, 50019, Firenze, Italy
| | - Paola Turano
- Dipartimento di Chimica, Università di Firenze, Via Della Lastruccia 3, Sesto Fiorentino, 50019, Firenze, Italy.,CERM, Università di Firenze, Via L. Sacconi 6, Sesto Fiorentino, 50019, Firenze, Italy
| | - Silvio Aime
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, Università di Torino, Torino, Italy.,IBB-CNR-UOS, Università di Torino, Torino, Italy
| | - Laura Ragona
- Istituto per lo Studio delle Macromolecole, CNR, Via Corti 12, 20133, Milano, Italy
| | - Henriette Molinari
- Istituto per lo Studio delle Macromolecole, CNR, Via Corti 12, 20133, Milano, Italy
| |
Collapse
|
20
|
Chemistry at the protein-mineral interface in L-ferritin assists the assembly of a functional (μ 3-oxo)Tris[(μ 2-peroxo)] triiron(III) cluster. Proc Natl Acad Sci U S A 2017; 114:2580-2585. [PMID: 28202724 DOI: 10.1073/pnas.1614302114] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
X-ray structures of homopolymeric L-ferritin obtained by freezing protein crystals at increasing exposure times to a ferrous solution showed the progressive formation of a triiron cluster on the inner cage surface of each subunit. After 60 min exposure, a fully assembled (μ3-oxo)Tris[(μ2-peroxo)(μ2-glutamato-κO:κO')](glutamato-κO)(diaquo)triiron(III) anionic cluster appears in human L-ferritin. Glu60, Glu61, and Glu64 provide the anchoring of the cluster to the protein cage. Glu57 shuttles incoming iron ions toward the cluster. We observed a similar metallocluster in horse spleen L-ferritin, indicating that it represents a common feature of mammalian L-ferritins. The structures suggest a mechanism for iron mineral formation at the protein interface. The functional significance of the observed patch of carboxylate side chains and resulting metallocluster for biomineralization emerges from the lower iron oxidation rate measured in the E60AE61AE64A variant of human L-ferritin, leading to the proposal that the observed metallocluster corresponds to the suggested, but yet unobserved, nucleation site of L-ferritin.
Collapse
|
21
|
Pontillo N, Pane F, Messori L, Amoresano A, Merlino A. Cisplatin encapsulation within a ferritin nanocage: a high-resolution crystallographic study. Chem Commun (Camb) 2016; 52:4136-9. [PMID: 26888424 DOI: 10.1039/c5cc10365g] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cisplatin (CDDP) can be encapsulated within the central cavity of reconstituted (apo)ferritin, (A)Ft, to form a drug-loaded protein of potential great interest for targeted cancer treatments. In this study, the interactions occurring between cisplatin and native horse spleen Ft in CDDP-encapsulated AFt are investigated by high-resolution X-ray crystallography. A protein bound Pt center is unambiguously identified in AFt subunits by comparative analysis of difference Fourier electron density maps and of anomalous dispersion data. Indeed, a [Pt(NH3)2H2O](2+) fragment is found coordinated to the His132 residue located on the inner surface of the large AFt spherical cage. Remarkably, Pt binding does not alter the overall physicochemical features (shape, volume, polarity/hydrophobicity and electrostatic potential) of the outer surface of the AFt nanocage. CDDP-encapsulated AFt appears to be an ideal nanocarrier for CDDP delivery to target sites, as it possesses high biocompatibility and can be internalized by receptor mediated endocytosis, thus carrying the drug to tumor tissue with higher selectivity than free CDDP.
Collapse
Affiliation(s)
- Nicola Pontillo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy.
| | - Francesca Pane
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy.
| | - Luigi Messori
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy.
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy. and CNR Institute of Biostructures and Bioimages, Via Mezzocannone 16, I-80126, Napoli, Italy
| |
Collapse
|
22
|
Sanyal S, Sardar PS, Roy MB, Pratihar S, Samanta S, Mukherjee M, Roy P, Dasgupta S, Ghosh S. Exploring the Nature of the Nanocavity and Channels in Apoferritin and Apoferritin-Sodium Dodecyl Sulfate Complex Using an Enhanced Antenna Effect through the Encapsulation of EuIII-Tetracycline. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sagarika Sanyal
- Department of Chemistry; Presidency University; 700073 Kolkata India
| | - Pinki Saha Sardar
- Department of Chemistry; Presidency University; 700073 Kolkata India
| | | | | | - Sugata Samanta
- Department of Chemistry; Presidency University; 700073 Kolkata India
| | - Moumita Mukherjee
- Department of Chemistry; Presidency University; 700073 Kolkata India
| | - Pritam Roy
- Department of Chemistry; Indian Institute of Technology; 721302 Kharagpur India
| | - Swagata Dasgupta
- Department of Chemistry; Indian Institute of Technology; 721302 Kharagpur India
| | - Sanjib Ghosh
- Department of Chemistry; Presidency University; 700073 Kolkata India
| |
Collapse
|
23
|
Abstract
Ferritins, the main intracellular iron storage proteins, have been studied for over 60 years, mainly focusing on the mammalian ones. This allowed the elucidation of the structure of these proteins and the mechanisms regulating their iron incorporation and mineralization. However, ferritin is present in most, although not all, eukaryotic cells, comprising monocellular and multicellular invertebrates and vertebrates. The aim of this review is to provide an update on the general properties of ferritins that are common to various eukaryotic phyla (except plants), and to give an overview on the structure, function and regulation of ferritins. An update on the animal models that were used to characterize H, L and mitochondrial ferritins is also provided. The data show that ferritin structure is highly conserved among different phyla. It exerts an important cytoprotective function against oxidative damage and plays a role in innate immunity, where it also contributes to prevent parenchymal tissue from the cytotoxicity of pro-inflammatory agonists released by the activation of the immune response activation. Less clear are the properties of the secretory ferritins expressed by insects and molluscs, which may be important for understanding the role played by serum ferritin in mammals.
Collapse
|
24
|
Behera RK, Torres R, Tosha T, Bradley JM, Goulding CW, Theil EC. Fe(2+) substrate transport through ferritin protein cage ion channels influences enzyme activity and biomineralization. J Biol Inorg Chem 2015. [PMID: 26202907 DOI: 10.1007/s00775-015-1279-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3·H2O), by moving cytoplasmic Fe(2+) through intracage ion channels to cage-embedded enzyme (2Fe(2+)/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe(2+) movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one -CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650 nm (DFP λ max). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe(3+)-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: (1) narrower interior ion channel openings/pores; (2) increased numbers of ion channel protein-metal binding sites, and (3) a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells.
Collapse
Affiliation(s)
- Rabindra K Behera
- Children's Hospital Oakland Research Institute (CHORI), 5700 Martin Luther King Jr. Way, Oakland, CA, 94609, USA
| | | | | | | | | | | |
Collapse
|
25
|
Heger Z, Skalickova S, Zitka O, Adam V, Kizek R. Apoferritin applications in nanomedicine. Nanomedicine (Lond) 2015; 9:2233-45. [PMID: 25405799 DOI: 10.2217/nnm.14.119] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nanomedicine as a continuously evolving discipline is still looking for a structure with perfect properties that is usable as a multifunctional transporter. Great potential is attributed to synthetic materials such as fullerenes, porous hollow silica nanoparticles and single-wall nanotubes, among others. However, materials that are natural to the human body are more acceptable by the organism, and thus become an attractive approach in this field of research. Ferritins are proteins that naturally occur in most living organisms throughout evolution and may be a possible transporter choice. Numerous applications have demonstrated the possibilities of iron-free ferritins, called apoferritins, serving as platforms for various nanomedical purposes This article summarizes the advantages and disadvantages of these proteins and discusses their practical applications and future perspectives.
Collapse
Affiliation(s)
- Zbynek Heger
- Department of Chemistry & Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | | | | | | | | |
Collapse
|
26
|
Russo CJ, Passmore LA. Electron microscopy: Ultrastable gold substrates for electron cryomicroscopy. Science 2014; 346:1377-80. [PMID: 25504723 DOI: 10.1126/science.1259530] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Despite recent advances, the structures of many proteins cannot be determined by electron cryomicroscopy because the individual proteins move during irradiation. This blurs the images so that they cannot be aligned with each other to calculate a three-dimensional density. Much of this movement stems from instabilities in the carbon substrates used to support frozen samples in the microscope. Here we demonstrate a gold specimen support that nearly eliminates substrate motion during irradiation. This increases the subnanometer image contrast such that α helices of individual proteins are resolved. With this improvement, we determine the structure of apoferritin, a smooth octahedral shell of α-helical subunits that is particularly difficult to solve by electron microscopy. This advance in substrate design will enable the solution of currently intractable protein structures.
Collapse
Affiliation(s)
- Christopher J Russo
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Lori A Passmore
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
27
|
Honarmand Ebrahimi K, Hagedoorn PL, Hagen WR. Unity in the Biochemistry of the Iron-Storage Proteins Ferritin and Bacterioferritin. Chem Rev 2014; 115:295-326. [DOI: 10.1021/cr5004908] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kourosh Honarmand Ebrahimi
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628
BC Delft, The Netherlands
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628
BC Delft, The Netherlands
| | - Wilfred R. Hagen
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628
BC Delft, The Netherlands
| |
Collapse
|