1
|
Abdalbagemohammedabdalsadeg S, Xiao BL, Ma XX, Li YY, Wei JS, Moosavi-Movahedi AA, Yousefi R, Hong J. Catalase immobilization: Current knowledge, key insights, applications, and future prospects - A review. Int J Biol Macromol 2024; 276:133941. [PMID: 39032907 DOI: 10.1016/j.ijbiomac.2024.133941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Catalase (CAT), a ubiquitous enzyme in all oxygen-exposed organisms, effectively decomposes hydrogen peroxide (H2O2), a harmful by-product, into water and oxygen, mitigating oxidative stress and cellular damage, safeguarding cellular organelles and tissues. Therefore, CAT plays a crucial role in maintaining cellular homeostasis and function. Owing to its pivotal role, CAT has garnered considerable interest. However, many challenges arise when used, especially in multiple practical processes. "Immobilization", a widely-used technique, can help improve enzyme properties. CAT immobilization offers numerous advantages, including enhanced stability, reusability, and facilitated downstream processing. This review presents a comprehensive overview of CAT immobilization. It starts with discussing various immobilization mechanisms, support materials, advantages, drawbacks, and factors influencing the performance of immobilized CAT. Moreover, the review explores the application of the immobilized CAT in various industries and its prospects, highlighting its essential role in diverse fields and stimulating further research and investigation. Furthermore, the review highlights some of the world's leading companies in the field of the CAT industry and their substantial potential for economic contribution. This review aims to serve as a discerning, source of information for researchers seeking a comprehensive cutting-edge overview of this rapidly evolving field and have been overwhelmed by the size of publications.
Collapse
Affiliation(s)
| | - Bao-Lin Xiao
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Xin-Xin Ma
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Yang-Yang Li
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Jian-She Wei
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | | | - Reza Yousefi
- Institute of Biochemistry and Biophysics, University of Tehran, 1417614418 Tehran, Iran
| | - Jun Hong
- School of Life Sciences, Henan University, 475000 Kaifeng, China.
| |
Collapse
|
2
|
Sahrmann PG, Donnan PH, Merz KM, Mansoorabadi SO, Goodwin DC. MRP.py: A Parametrizer of Post-Translationally Modified Residues. J Chem Inf Model 2020; 60:4424-4428. [PMID: 32672967 DOI: 10.1021/acs.jcim.0c00472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MRP.py is a Python-based parametrization program for covalently modified amino acid residues for molecular dynamics simulations. Charge derivation is performed via an RESP charge fit, and force constants are obtained through rewriting of either protein or GAFF database parameters. This allows for the description of interfacial interactions between the modifed residue and protein. MRP.py is capable of working with a variety of protein databases. MRP.py's highly general and systematic method of obtaining parameters allows the user to circumvent the process of parametrizing the modified residue-protein interface. Two examples, a covalently bound inhibitor and covalent adduct consisting of modified residues, are provided in the Supporting Information.
Collapse
Affiliation(s)
- Patrick G Sahrmann
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama36849-5312, United States
| | - Patrick H Donnan
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama36849-5312, United States
| | - Kenneth M Merz
- Department of Chemistry and the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1312, United States
| | - Steven O Mansoorabadi
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama36849-5312, United States
| | - Douglas C Goodwin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama36849-5312, United States
| |
Collapse
|
3
|
Njuma OJ, Davis I, Ndontsa EN, Krewall JR, Liu A, Goodwin DC. Mutual synergy between catalase and peroxidase activities of the bifunctional enzyme KatG is facilitated by electron hole-hopping within the enzyme. J Biol Chem 2017; 292:18408-18421. [PMID: 28972181 DOI: 10.1074/jbc.m117.791202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/22/2017] [Indexed: 11/06/2022] Open
Abstract
KatG is a bifunctional, heme-dependent enzyme in the front-line defense of numerous bacterial and fungal pathogens against H2O2-induced oxidative damage from host immune responses. Contrary to the expectation that catalase and peroxidase activities should be mutually antagonistic, peroxidatic electron donors (PxEDs) enhance KatG catalase activity. Here, we establish the mechanism of synergistic cooperation between these activities. We show that at low pH values KatG can fully convert H2O2 to O2 and H2O only if a PxED is present in the reaction mixture. Stopped-flow spectroscopy results indicated rapid initial rates of H2O2 disproportionation slowing concomitantly with the accumulation of ferryl-like heme states. These states very slowly returned to resting (i.e. ferric) enzyme, indicating that they represented catalase-inactive intermediates. We also show that an active-site tryptophan, Trp-321, participates in off-pathway electron transfer. A W321F variant in which the proximal tryptophan was replaced with a non-oxidizable phenylalanine exhibited higher catalase activity and less accumulation of off-pathway heme intermediates. Finally, rapid freeze-quench EPR experiments indicated that both WT and W321F KatG produce the same methionine-tyrosine-tryptophan (MYW) cofactor radical intermediate at the earliest reaction time points and that Trp-321 is the preferred site of off-catalase protein oxidation in the native enzyme. Of note, PxEDs did not affect the formation of the MYW cofactor radical but could reduce non-productive protein-based radical species that accumulate during reaction with H2O2 Our results suggest that catalase-inactive intermediates accumulate because of off-mechanism oxidation, primarily of Trp-321, and PxEDs stimulate KatG catalase activity by preventing the accumulation of inactive intermediates.
Collapse
Affiliation(s)
- Olive J Njuma
- From the Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312
| | - Ian Davis
- the Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698, and.,the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Elizabeth N Ndontsa
- From the Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312
| | - Jessica R Krewall
- From the Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312
| | - Aimin Liu
- the Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698, and
| | - Douglas C Goodwin
- From the Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312,
| |
Collapse
|
4
|
Lončar N, Fraaije MW. Catalases as biocatalysts in technical applications: current state and perspectives. Appl Microbiol Biotechnol 2015; 99:3351-7. [DOI: 10.1007/s00253-015-6512-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 11/30/2022]
|
5
|
Kudalkar SN, Njuma OJ, Li Y, Muldowney M, Fuanta NR, Goodwin DC. A role for catalase-peroxidase large loop 2 revealed by deletion mutagenesis: control of active site water and ferric enzyme reactivity. Biochemistry 2015; 54:1648-62. [PMID: 25674665 DOI: 10.1021/bi501221a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Catalase-peroxidases (KatGs), the only catalase-active members of their superfamily, all possess a 35-residue interhelical loop called large loop 2 (LL2). It is essential for catalase activity, but little is known about its contribution to KatG function. LL2 shows weak sequence conservation; however, its length is nearly identical across KatGs, and its apex invariably makes contact with the KatG-unique C-terminal domain. We used site-directed and deletion mutagenesis to interrogate the role of LL2 and its interaction with the C-terminal domain in KatG structure and catalysis. Single and double substitutions of the LL2 apex had little impact on the active site heme [by magnetic circular dichroism or electron paramagnetic resonance (EPR)] and activity (catalase or peroxidase). Conversely, deletion of a single amino acid from the LL2 apex reduced catalase activity by 80%. Deletion of two or more apex amino acids or all of LL2 diminished catalase activity by 300-fold. Peroxide-dependent but not electron donor-dependent kcat/KM values for deletion variant peroxidase activity were reduced 20-200-fold, and kon for cyanide binding diminished by 3 orders of magnitude. EPR spectra for deletion variants were all consistent with an increase in the level of pentacoordinate high-spin heme at the expense of hexacoordinate high-spin states. Together, these data suggest a shift in the distribution of active site waters, altering the reactivity of the ferric state, toward, among other things, compound I formation. These results identify the importance of LL2 length conservation for maintaining an intersubunit interaction that is essential for an active site water distribution that facilitates KatG catalytic activity.
Collapse
Affiliation(s)
- Shalley N Kudalkar
- Department of Chemistry and Biochemistry, Auburn University , Auburn, Alabama 36849-5312, United States
| | | | | | | | | | | |
Collapse
|
6
|
Njuma OJ, Ndontsa EN, Goodwin DC. Catalase in peroxidase clothing: Interdependent cooperation of two cofactors in the catalytic versatility of KatG. Arch Biochem Biophys 2013; 544:27-39. [PMID: 24280274 DOI: 10.1016/j.abb.2013.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 11/11/2013] [Accepted: 11/15/2013] [Indexed: 11/26/2022]
Abstract
Catalase-peroxidase (KatG) is found in eubacteria, archaea, and lower eukaryotae. The enzyme from Mycobacterium tuberculosis has received the greatest attention because of its role in activation of the antitubercular pro-drug isoniazid, and the high frequency with which drug resistance stems from mutations to the katG gene. Generally, the catalase activity of KatGs is striking. It rivals that of typical catalases, enzymes with which KatGs share no structural similarity. Instead, catalatic turnover is accomplished with an active site that bears a strong resemblance to a typical peroxidase (e.g., cytochrome c peroxidase). Yet, KatG is the only member of its superfamily with such capability. It does so using two mutually dependent cofactors: a heme and an entirely unique Met-Tyr-Trp (MYW) covalent adduct. Heme is required to generate the MYW cofactor. The MYW cofactor allows KatG to leverage heme intermediates toward a unique mechanism for H2O2 oxidation. This review evaluates the range of intermediates identified and their connection to the diverse catalytic processes KatG facilitates, including mechanisms of isoniazid activation.
Collapse
Affiliation(s)
- Olive J Njuma
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA
| | - Elizabeth N Ndontsa
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA
| | - Douglas C Goodwin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| |
Collapse
|
7
|
Purification of recombinant catalase-peroxidase HPI from E. coli and its application in enzymatic polymerization reactions. Appl Microbiol Biotechnol 2013; 98:1119-26. [PMID: 23653125 DOI: 10.1007/s00253-013-4948-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 10/26/2022]
Abstract
In this paper, a recombinant catalase-peroxidase HPI from Escherichia coli was prepared, purified, and used in enzymatic polymerization reactions for the production of several oligomeric products. We tested the enzyme on four different substrates, chosen as representative of phenols and anilines: phenol, 3-methoxyphenol, catechol, and aniline. The polymerization reactions were followed by SEC-HPLC analysis, and except for aniline, all the other substrates were completely converted into one or more polymerization products. Results showed that reactions performed with phenol and 3-methoxyphenol allowed the isolation of some oligomers of different weight: a 27-monomeric unit oligomer and a 23-U oligomer are the heaviest ones. Experiments performed with catechol showed the formation of oligomers of 7 U in the reaction with HPI. HPI polymerization reactions performed with aniline allowed the identification of two different oligomers, one of 4 U and one of 10 U. All the substrates have been also used in reactions catalyzed by HRP in the same reaction conditions. Several products were common to the two enzymes. This work suggests the use of HPI as an alternative enzyme in peroxidatic reactions for the production of different oligomers from phenols and other compounds.
Collapse
|