1
|
Computational strategies to model the interaction and the reactivity of biologically-relevant transition metal complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
2
|
Quiroga AG, Cama M, Pajuelo-Lozano N, Álvarez-Valdés A, Sanchez Perez I. New Findings in the Signaling Pathways of cis and trans Platinum Iodido Complexes' Interaction with DNA of Cancer Cells. ACS OMEGA 2019; 4:21855-21861. [PMID: 31891063 PMCID: PMC6933576 DOI: 10.1021/acsomega.9b02831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/15/2019] [Indexed: 05/06/2023]
Abstract
We have selected a series of aliphatic amine platinum compounds bearing chloride and/or iodide as the leaving groups. The complexes' cytotoxicity and interaction with DNA indicated differences in the reactivity. Now, we are reporting on the analysis of their molecular mechanism of action on gastric cancer cells. Our data reveals differences between them. Chlorido drugs showed similar behavior to cisplatin; they both required p53 to induce apoptosis but only cis-ipa showed DNA damage requirement for apoptosis induction. On the contrary, cis and trans iodido induced cell death independent of p53 activity, and they induced cell death through Bid activation, so their toxicity could be enhanced in a combined treatment with novel Bcl-2 protein family inhibitors. We also report the structural features of the DNA adduct for one of the complexes by X-ray diffraction. These findings represent a step forward in the search for new platinum-derived agents more specific and effective in the treatment of cancer.
Collapse
Affiliation(s)
- Adoración G. Quiroga
- Inorganic Chemistry Department,
Universidad Autónoma de Madrid and IAdChem Universidad
Autónoma de Madrid, Madrid 28049, Spain
- E-mail:
(A.G.Q.)
| | - Marta Cama
- Inorganic Chemistry Department,
Universidad Autónoma de Madrid and IAdChem Universidad
Autónoma de Madrid, Madrid 28049, Spain
- Biochemistry Department, Faculty of Medicine,
Instituto de Investigaciones Biomédicas Alberto Sols.
CSIC-UAM, Madrid 28029, Spain
| | - Natalia Pajuelo-Lozano
- Biochemistry Department, Faculty of Medicine,
Instituto de Investigaciones Biomédicas Alberto Sols.
CSIC-UAM, Madrid 28029, Spain
| | - Amparo Álvarez-Valdés
- Inorganic Chemistry Department,
Universidad Autónoma de Madrid and IAdChem Universidad
Autónoma de Madrid, Madrid 28049, Spain
| | - Isabel Sanchez Perez
- Biochemistry Department, Faculty of Medicine,
Instituto de Investigaciones Biomédicas Alberto Sols.
CSIC-UAM, Madrid 28029, Spain
- E-mail:
(I.S.P.)
| |
Collapse
|
3
|
Papadia P, Gandin V, Barbanente A, Ruello AG, Marzano C, Micoli K, Hoeschele JD, Natile G, Margiotta N. A minimal structural variation can overcome tumour resistance of oxaliplatin: the case of 4,5-dehydrogenation of the cyclohexane ring. RSC Adv 2019; 9:32448-32452. [PMID: 35529760 PMCID: PMC9072990 DOI: 10.1039/c9ra07760j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 11/23/2022] Open
Abstract
A new family of anticancer compounds has been derived from oxaliplatin by inserting a double-bond between carbons 4 and 5 of the 1,2-diaminocyclohexane ring. Testing against a panel of human tumour cell lines including cervical (A431), ovarian (2008), and colon carcinomas (HCT-15 and LoVo), and two oxaliplatin-resistant clones (LoVo OXP and LoVo MDR) has shown that the new compounds have, in general, equal if not better cytotoxic activity and are able to overcome the oxaliplatin-resistance. Moreover, the oxalato derivative induced lipid droplets increase in LoVo OXP cells thus suggesting the involvement of metabolism stress in its mechanism of action.
Collapse
Affiliation(s)
- Paride Papadia
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento Prov.le Lecce-Monteroni, Centro Ecotekne 73100 Lecce Italy +39 832 299263
- CIRCMSB, Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici Via Celso Ulpiani 27 70121 Bari Italy
| | - Valentina Gandin
- Dipartimento di Scienze del Farmaco, Università di Padova Via Marzolo 5 35131 Padova Italy
| | - Alessandra Barbanente
- CIRCMSB, Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici Via Celso Ulpiani 27 70121 Bari Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro Via E. Orabona 4 70125 Bari Italy +39 80 5442759
| | - Alessandro G Ruello
- CIRCMSB, Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici Via Celso Ulpiani 27 70121 Bari Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro Via E. Orabona 4 70125 Bari Italy +39 80 5442759
| | - Cristina Marzano
- Dipartimento di Scienze del Farmaco, Università di Padova Via Marzolo 5 35131 Padova Italy
| | - Katia Micoli
- CIRCMSB, Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici Via Celso Ulpiani 27 70121 Bari Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro Via E. Orabona 4 70125 Bari Italy +39 80 5442759
| | - James D Hoeschele
- Department of Chemistry, Eastern Michigan University 48197 Ypsilanti MI USA
| | - Giovanni Natile
- CIRCMSB, Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici Via Celso Ulpiani 27 70121 Bari Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro Via E. Orabona 4 70125 Bari Italy +39 80 5442759
| | - Nicola Margiotta
- CIRCMSB, Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici Via Celso Ulpiani 27 70121 Bari Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro Via E. Orabona 4 70125 Bari Italy +39 80 5442759
| |
Collapse
|
4
|
Štarha P, Vančo J, Trávníček Z. Platinum iodido complexes: A comprehensive overview of anticancer activity and mechanisms of action. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.09.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Synthesis, Reactivity Studies, and Cytotoxicity of Two trans-Iodidoplatinum(II) Complexes. Does Photoactivation Work? INORGANICS 2018. [DOI: 10.3390/inorganics6040127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
trans-Platinum complexes have been the landmark in unconventional drugs prompting the development of innovative structures that might exhibit chemical and biological profiles different to cisplatin. Iodido complexes signaled a new turning point in the platinum drug design field when their cytotoxicity was reevaluated and reported. In this new study, we have synthesized and evaluated diodidoplatinum complexes trans-[PtI2(amine)(pyridine)] bearing aliphatic amines (isopropylamine and methylamine) and pyridines in trans configuration. X-ray diffraction data support the structural characterization. Their cytotoxicity has been evaluated in tumor cell lines such as SAOS-2, A375, T-47D, and HCT116. Moreover, we report their solution behavior and reactivity with biological models. Ultraviolet-a (UVA) irradiation induces an increase in their reactivity towards model nucleobase 5′-GMP in early stages, and promotes the release of the pyridine ligand (spectator ligand) at longer reaction times. Density Functional calculations have been performed and the results are compared with our previous studies with other iodido derivatives.
Collapse
|
6
|
Misirlić Denčić S, Poljarević J, Isakovic AM, Marković I, Sabo TJ, Grgurić-Šipka S. Antileukemic action of novel diamine Pt(II) halogenido complexes: Comparison of the representative novel Pt(II) with corresponding Pt(IV) complex. Chem Biol Drug Des 2017; 90:262-271. [PMID: 28102932 DOI: 10.1111/cbdd.12945] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/15/2016] [Accepted: 01/05/2017] [Indexed: 12/11/2022]
Abstract
This study presents the synthesis, characterization, and antitumor action of five new Pt(II) halogenido, chlorido, and iodido complexes with edda type of ligands. (S,S)-Ethylenediamine-N,N'-di-2-(3-cyclohexyl)propanoic acid dihydrochloride and its methyl, ethyl, and n-propyl esters were prepared according to the previously reported procedure. All investigated complexes were characterized by IR, ESI-MS (1 H, 13 C, and HMBC) NMR spectroscopy, and elemental analysis. Their cytotoxic action was investigated in four human tumor cell lines: promyelocytic (HL-60) and lymphocytic (REH) leukemia, glioma (U251), and lung carcinoma (H460). Cell viability was assessed by acid phosphatase and LDH assay, while oxidative stress and cell death parameters were analyzed by flow cytometry. The results showed that novel Pt(II) complexes exhibited antitumor action superior to precursor ligands, with iodido complexes being more efficient than corresponding chlorido complexes. Human promyelocytic cell line (HL-60) was the most sensitive to antitumor action of all investigated substances and was used for investigation of the underlying mode of antileukemic action. The investigated Pt(II) complexes showed more potent antileukemic action than corresponding Pt(IV) complex, through induction of oxidative stress and apoptosis, evidenced by caspase (8, 9, and 3) activation and phosphatidylserine externalization.
Collapse
Affiliation(s)
- Sonja Misirlić Denčić
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Andjelka M Isakovic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivanka Marković
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tibor J Sabo
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
7
|
Marzo T, Pillozzi S, Hrabina O, Kasparkova J, Brabec V, Arcangeli A, Bartoli G, Severi M, Lunghi A, Totti F, Gabbiani C, Quiroga AG, Messori L. cis-Pt I2(NH3)2: a reappraisal. Dalton Trans 2016; 44:14896-905. [PMID: 26226326 DOI: 10.1039/c5dt01196e] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The investigation of cis-PtI2(NH3)2, the diiodido analogue of cisplatin (cisPtI2 hereafter), has been unjustly overlooked so far mainly because of old claims of pharmacological inactivity. Some recent - but still fragmentary - findings prompted us to reconsider more systematically the chemical and biological profile of cisPtI2 in comparison with cisplatin. Its solution behaviour, interactions with DNA and cytotoxic properties versus selected cancer cell lines were thus extensively analysed through a variety of biophysical and computational methods. Notably, we found that cisPtI2 is highly cytotoxic in vitro toward a few solid tumour cell lines and that its DNA platination pattern closely reproduces that of cisplatin; cisPtI2 is also shown to completely overcome resistance to cisplatin in a platinum resistant cancer cell line. The differences in the biological actions of these two Pt complexes are most likely related to slight but meaningful differences in their solution behaviour and reactivity. Overall, a very encouraging and unexpected pharmacological profile emerges for cisPtI2 with relevant implications both in terms of mechanistic knowledge and of prospective clinical application. An ab initio DFT study is also included to support the interpretation of the solution behaviour of cisPtI2 under physiological and slightly acidic pH conditions.
Collapse
Affiliation(s)
- Tiziano Marzo
- MetMed, Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Musumeci D, Platella C, Riccardi C, Merlino A, Marzo T, Massai L, Messori L, Montesarchio D. A first-in-class and a fished out anticancer platinum compound: cis-[PtCl2(NH3)2] and cis-[PtI2(NH3)2] compared for their reactivity towards DNA model systems. Dalton Trans 2016; 45:8587-600. [PMID: 27126508 DOI: 10.1039/c6dt00294c] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Contrary to what was believed for many years, cis-PtI2(NH3)2, the diiodido analogue of cisplatin, displays high in vitro antiproliferative activity toward a set of tumour cell lines, overcoming resistance to cisplatin in a platinum-resistant cancer cell line. In the context of a general reappraisal of iodinated Pt(ii) derivatives, aiming at a more systematic evaluation of their chemical and biological profiles, here we report on the reactivity of cis-PtI2(NH3)2 with selected DNA model systems, in single, double strand or G-quadruplex form, using cisplatin as a control. A combined approach has been exploited in this study, including circular dichroism (CD), UV-visible spectroscopy and electrospray mass spectrometry (ESI-MS) analyses. The data reveal that cis-PtI2(NH3)2 shows an overall reactivity towards the investigated oligonucleotides significantly higher than cisplatin.
Collapse
Affiliation(s)
- Domenica Musumeci
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 21, I-80126 Napoli, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Fanelli M, Formica M, Fusi V, Giorgi L, Micheloni M, Paoli P. New trends in platinum and palladium complexes as antineoplastic agents. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.11.004] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Increasing DNA reactivity and in vitro antitumor activity of trans diiodido Pt(II) complexes with UVA light. J Inorg Biochem 2015; 153:211-218. [DOI: 10.1016/j.jinorgbio.2015.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/20/2015] [Accepted: 07/10/2015] [Indexed: 11/20/2022]
|
11
|
Reactions of cytotoxic metallodrugs with lysozyme in pure DMSO explored through UV–Vis absorption spectroscopy and ESI MS. Biometals 2015; 28:425-30. [DOI: 10.1007/s10534-015-9839-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/17/2015] [Indexed: 10/24/2022]
|
12
|
Medrano A, Dennis SM, Alvarez-Valdés A, Perles J, McGregor Mason T, Quiroga AG. Synthesis, cytotoxicity, DNA interaction and cell cycle studies of trans-diiodophosphine Pt(ii) complexes. Dalton Trans 2015; 44:3557-62. [DOI: 10.1039/c4dt02392g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Diiodido phosphine Pt complexes were synthesized and their biological activity studied. The complex with isopropylamine was the best candidate.
Collapse
Affiliation(s)
- Angeles Medrano
- Department of Inorganic Chemistry
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | | | | | | | | | - Adoracion G. Quiroga
- Department of Inorganic Chemistry
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| |
Collapse
|
13
|
Savić A, Filipović L, Aranđelović S, Dojčinović B, Radulović S, Sabo TJ, Grgurić-Šipka S. Synthesis, characterization and cytotoxic activity of novel platinum(II) iodido complexes. Eur J Med Chem 2014; 82:372-84. [DOI: 10.1016/j.ejmech.2014.05.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/28/2014] [Accepted: 05/25/2014] [Indexed: 10/25/2022]
|
14
|
Messori L, Marzo T, Gabbiani C, Valdes AA, Quiroga AG, Merlino A. Peculiar features in the crystal structure of the adduct formed between cis-PtI2(NH3)2 and hen egg white lysozyme. Inorg Chem 2013; 52:13827-9. [PMID: 24256441 DOI: 10.1021/ic402611m] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The reactivity of cis-diamminediiodidoplatinum(II), cis-PtI2(NH3)2, the iodo analogue of cisplatin, with hen egg white lysozyme (HEWL) was investigated by electrospray ionization mass spectrometry and X-ray crystallography. Interestingly, the study compound forms a stable 1:1 protein adduct for which the crystal structure was solved at 1.99 Å resolution. In this adduct, the Pt(II) center, upon release of one ammonia ligand, selectively coordinates to the imidazole of His15. Both iodide ligands remain bound to platinum, with this being a highly peculiar and unexpected feature. Notably, two equivalent modes of Pt(II) binding are possible that differ only in the location of I atoms with respect to ND1 of His15. The structure of the adduct was compared with that of HEWL-cisplatin, previously described; differences are stressed and their important mechanistic implications discussed.
Collapse
Affiliation(s)
- Luigi Messori
- Department of Chemistry, University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | | | | | | | | | | |
Collapse
|