1
|
Li XB, Wu QY, Wang CZ, Lan JH, Zhang M, Gibson JK, Chai ZF, Shi WQ. Reduction of Np(VI) with hydrazinopropionitrile via water-mediated proton transfer. Phys Chem Chem Phys 2022; 24:17782-17791. [PMID: 35848639 DOI: 10.1039/d2cp01730j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Effectively adjusting and controlling the valence state of neptunium (Np) is essential in its separation during spent fuel reprocessing. Hydrazine and its derivatives as free-salts can selectively reduce Np(VI) to Np(V). Reduction mechanisms of Np(VI) with hydrazine and four derivatives have been explored using multiple theoretical methods in our previous works. Herein, we examine the reduction mechanism of Np(VI) with hydrazinopropionitrile (NCCH2N2H3) which exhibits faster kinetics than most other hydrazine derivatives probably due to its σ-π hyperconjugation effect. Free radical ion pathways I, II and III involving the three types of hydrazine H atoms were found that correspond to the experimentally established mechanism of reduction of two Np(VI) via initial oxidation to [NCCH2N2H3]+˙, followed by conversion to NCCH2N2H (+2H3O+) and ultimately to CH3CN + N2. Potential energy profiles suggest that the second redox stage is rate-determining for all three pathways. Pathway I with water-mediated proton transfer is energetically preferred for hydrazinopropionitrile. Analyses using the approaches of localized molecular orbitals (LMOs), quantum theory of atoms in molecules (QTAIM), and intrinsic reaction coordinate (IRC) elucidate the bonding evolution for the structures on the reaction pathways. The results of the spin density reveal that the reduction of the first Np(VI) ion is the outer-sphere electron transfer, while that of the second Np(VI) ion is the hydrogen transfer. This work offers new insights into the nature of reduction of Np(VI) by hydrazinopropionitrile via water-mediated proton transfer, and provides a basis for designing free-salt reductants for Np separations.
Collapse
Affiliation(s)
- Xiao-Bo Li
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China. .,Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, College of Nuclear Science and Technology, Harbin Engineering University, Harbin, Heilongjiang, 150001, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Meng Zhang
- Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, College of Nuclear Science and Technology, Harbin Engineering University, Harbin, Heilongjiang, 150001, China
| | - John K Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Arsenic Toxicity: Molecular Targets and Therapeutic Agents. Biomolecules 2020; 10:biom10020235. [PMID: 32033229 PMCID: PMC7072575 DOI: 10.3390/biom10020235] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
High arsenic (As) levels in food and drinking water, or under some occupational conditions, can precipitate chronic toxicity and in some cases cancer. Millions of people are exposed to unacceptable amounts of As through drinking water and food. Highly exposed individuals may develop acute, subacute, or chronic signs of poisoning, characterized by skin lesions, cardiovascular symptoms, and in some cases, multi-organ failure. Inorganic arsenite(III) and organic arsenicals with the general formula R-As2+ are bound tightly to thiol groups, particularly to vicinal dithiols such as dihydrolipoic acid (DHLA), which together with some seleno-enzymes constitute vulnerable targets for the toxic action of As. In addition, R-As2+-compounds have even higher affinity to selenol groups, e.g., in thioredoxin reductase that also possesses a thiol group vicinal to the selenol. Inhibition of this and other ROS scavenging seleno-enzymes explain the oxidative stress associated with arsenic poisoning. The development of chelating agents, such as the dithiols BAL (dimercaptopropanol), DMPS (dimercapto-propanesulfonate) and DMSA (dimercaptosuccinic acid), took advantage of the fact that As had high affinity towards vicinal dithiols. Primary prevention by reducing exposure of the millions of people exposed to unacceptable As levels should be the prioritized strategy. However, in acute and subacute and even some cases with chronic As poisonings chelation treatment with therapeutic dithiols, in particular DMPS appears promising as regards alleviation of symptoms. In acute cases, initial treatment with BAL combined with DMPS should be considered.
Collapse
|
3
|
Emambocus S, Rhyman L, Ramasami P. Theoretical Study of the Microhydration the Chemical Warfare Agent Sulfur Mustard. ACS OMEGA 2020; 5:1822-1831. [PMID: 32039318 PMCID: PMC7003240 DOI: 10.1021/acsomega.9b03061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
A microhydration study of sulfur mustard (SM) was carried out using M06-2X, B3LYP, B3LYP-D3, and MP2 levels of theory with the 6-311++G(2d,2p) basis set. The changes in energetics, structural parameters and vibrational wavenumbers following the addition of up to three discrete water molecules to SM were analyzed. We observed slight changes in the geometry of SM upon microhydration. The stability of hydrated clusters is due to weak C-H···O-H hydrogen bonds. The free energy change for the formation of the clusters is positive at room temperature and becomes exergonic when the temperature decreases. The infrared stretchings of C-Cl of SM and O-H of water are redshifted upon the addition of water molecules. The findings from this work add to the literature of hydrated SM and can be useful in its detection and subsequent destruction.
Collapse
Affiliation(s)
- Shëyhaane
A. Emambocus
- Computational
Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius
| | - Lydia Rhyman
- Computational
Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius
- Department
of Chemical Sciences, University of Johannesburg, PO Box 17011, Doornfontein, Johannesburg 2028, South Africa
| | - Ponnadurai Ramasami
- Computational
Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius
- Department
of Chemical Sciences, University of Johannesburg, PO Box 17011, Doornfontein, Johannesburg 2028, South Africa
| |
Collapse
|
4
|
Pfaff AR, Beltz J, King E, Ercal N. Medicinal Thiols: Current Status and New Perspectives. Mini Rev Med Chem 2020; 20:513-529. [PMID: 31746294 PMCID: PMC7286615 DOI: 10.2174/1389557519666191119144100] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 02/08/2023]
Abstract
The thiol (-SH) functional group is found in a number of drug compounds and confers a unique combination of useful properties. Thiol-containing drugs can reduce radicals and other toxic electrophiles, restore cellular thiol pools, and form stable complexes with heavy metals such as lead, arsenic, and copper. Thus, thiols can treat a variety of conditions by serving as radical scavengers, GSH prodrugs, or metal chelators. Many of the compounds discussed here have been in use for decades, yet continued exploration of their properties has yielded new understanding in recent years, which can be used to optimize their clinical application and provide insights into the development of new treatments. The purpose of this narrative review is to highlight the biochemistry of currently used thiol drugs within the context of developments reported in the last five years. More specifically, this review focuses on thiol drugs that represent the standard of care for their associated conditions, including N-acetylcysteine, 2,3-meso-dimercaptosuccinic acid, British anti-Lewisite, D-penicillamine, amifostine, and others. Reports of novel dosing regimens, delivery strategies, and clinical applications for these compounds were examined with an eye toward emerging approaches to address a wide range of medical conditions in the future.
Collapse
Affiliation(s)
- Annalise R. Pfaff
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, U.S.A
| | - Justin Beltz
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, U.S.A
| | - Emily King
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, U.S.A
| | - Nuran Ercal
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, U.S.A
| |
Collapse
|