1
|
Grafinger OR, Hayward JJ, Meng Y, Geddes-McAlister J, Li Y, Mar S, Sheng M, Su B, Thillainadesan G, Lipsman N, Coppolino MG, Trant JF, Jerzak KJ, Leong HS. Cancer cell extravasation requires iplectin-mediated delivery of MT1-MMP at invadopodia. Br J Cancer 2024; 131:931-943. [PMID: 38969866 PMCID: PMC11369281 DOI: 10.1038/s41416-024-02782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Invadopodia facilitate cancer cell extravasation, but the molecular mechanism whereby invadopodia-specific proteases such as MT1-MMP are called to invadopodia is unclear. METHODS Mass spectrometry and immunoprecipitation were used to identify interactors of MT1-MMP in metastatic breast cancer cells. After identification, siRNA and small molecule inhibitors were used to assess the effect these interactors had on cellular invasiveness. The chicken embryo chorioallantoic membrane (CAM) model was used to assess extravasation and invadopodia formation in vivo. RESULTS In metastatic breast cancer cells, MT1-MMP was found to associate with plectin, a cytolinker and scaffolding protein. Complex formation between plectin and MT1-MMP launches invadopodia formation, a subtype we termed iplectin (i = invadopodial). iPlectin delivers MT1-MMP to invadopodia and is indispensable for regulating cell surface levels of the enzyme. Genetic depletion of plectin with siRNA reduced invadopodia formation and cell invasion in vitro. In vivo extravasation efficiency assays and intravital imaging revealed iplectin to be a key contributor to invadopodia ultrastructure and essential for extravasation. Pharmacologic inhibition of plectin using the small molecule Plecstatin-1 (PST-1) abrogated MT1-MMP delivery to invadopodia and extravasation efficiency. CONCLUSIONS Anti-metastasis therapeutic approaches that target invadopodia are possible by disrupting interactions between MT1-MMP and iplectin. CLINICAL TRIAL REGISTRATION NUMBER NCT04608357.
Collapse
Affiliation(s)
- Olivia R Grafinger
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - John J Hayward
- Department of Chemistry, University of Windsor, Windsor, ON, Canada
| | - Ying Meng
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | | | - Yan Li
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sara Mar
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Minzhi Sheng
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Boyang Su
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Gobi Thillainadesan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Nir Lipsman
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Marc G Coppolino
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - John F Trant
- Department of Chemistry, University of Windsor, Windsor, ON, Canada
| | - Katarzyna J Jerzak
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Medical Oncology, Sunnybrook Odette Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Hon S Leong
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada.
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Oszajca M, Flejszar M, Szura A, Dróżdż P, Brindell M, Kurpiewska K. Exploring the coordination chemistry of ruthenium complexes with lysozymes: structural and in-solution studies. Front Chem 2024; 12:1371637. [PMID: 38638879 PMCID: PMC11024358 DOI: 10.3389/fchem.2024.1371637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/06/2024] [Indexed: 04/20/2024] Open
Abstract
This study presents a comprehensive structural analysis of the adducts formed upon the reaction of two Ru(III) complexes [HIsq][trans-RuIIICl4(dmso)(Isq)] (1) and [H2Ind][trans-RuIIICl4(dmso)(HInd)] (2) (where HInd-indazole, Isq-isoquinoline, analogs of NAMI-A) and two Ru(II) complexes, cis-[RuCl2(dmso)4] (c) and trans-[RuCl2(dmso)4] (t), with hen-egg white lysozyme (HEWL). Additionally, the crystal structure of an adduct of human lysozyme (HL) with ruthenium complex, [H2Ind][trans-RuCl4(dmso)(HInd)] was solved. X-ray crystallographic data analysis revealed that all studied Ru complexes, regardless of coordination surroundings and metal center charge, coordinate to the same amino acids (His15, Arg14, and Asp101) of HEWL, losing most of their original ligands. In the case of the 2-HL adduct, two distinct metalation sites: (i) Arg107, Arg113 and (ii) Gln127, Gln129, were identified. Crystallographic data were supported by studies of the interaction of 1 and 2 with HEWL in an aqueous solution. Hydrolytic stability studies revealed that both complexes 1 and 2 liberate the N-heterocyclic ligand under crystallization-like conditions (pH 4.5) as well as under physiological pH conditions, and this process is not significantly affected by the presence of HEWL. A comparative examination of nine crystal structures of Ru complexes with lysozyme, obtained through soaking and co-crystallization experiments, together with in-solution studies of the interaction between 1 and 2 with HEWL, indicates that the hydrolytic release of the N-heterocyclic ligand is one of the critical factors in the interaction between Ru complexes and lysozyme. This understanding is crucial in shedding light on the tendency of Ru complexes to target diverse metalation sites during the formation and in the final forms of the adducts with proteins.
Collapse
Affiliation(s)
- Maria Oszajca
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Monika Flejszar
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Rzeszów, Poland
| | - Arkadiusz Szura
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Patrycja Dróżdż
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Małgorzata Brindell
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Katarzyna Kurpiewska
- Department of Crystal Chemistry and Crystal Physics, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| |
Collapse
|
3
|
Arshad JZ, Tabassum S, Kiani MS, Arshad S, Hashmi MA, Majeed I, Ali H, Shah SSA. Anticancer Properties of Ru and Os Half-Sandwich Complexes of N,S Bidentate Schiff Base Ligands Derived from Phenylthiocarbamide. Chem Asian J 2023; 18:e202300804. [PMID: 37737043 DOI: 10.1002/asia.202300804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 09/23/2023]
Abstract
The versatile coordinating nature of N,S bidentate ligands is of great importance in medicinal chemistry imparting stability and enhancing biological properties of the metal complexes. Phenylthiocarbamide-based N,S donor Schiff bases converted into RuII /OsII (cymene) complexes and characterized by spectroscopic techniques and elemental analysis. The hydrolytic stability of metal complexes to undergo metal-halide ligand exchange reaction was confirmed both by the DFT and NMR experimentation. The ONIOM (QM/MM) study confirmed the histone protein targeting nature of aqua/hydroxido complex 2 aH with an excellent binding energy of -103.19 kcal/mol. The antiproliferative activity against a panel of cancer cells A549, MCF-7, PC-3, and HepG2 revealed that ruthenium complexes 1 a-3 a were more cytotoxic than osmium complexes and their respective ligands 1-3 as well. Among these ruthenium cymene complex bearing sulfonamide moiety 2 a proved a strong cytotoxic agent and showed excellent correlation of cellular accumulation, lipophilicity, and drug-likeness to the anticancer activity. Moreover, the favorable physiochemical properties such as bioavailability and gastrointestinal absorption of ligand 2 also supported the development of Ru complex 2 a as an orally active anticancer metallodrug.
Collapse
Affiliation(s)
- Jahan Zaib Arshad
- Department of Chemistry, Government College, Women University Sialkot, Kutchehry Road, Sialkot, Pakistan
| | - Sana Tabassum
- Department of Chemistry, Government College, Women University Sialkot, Kutchehry Road, Sialkot, Pakistan
| | - Muhammad Shaheer Kiani
- Department of Chemistry, Division of Science & Technology, University of Education, 54770, Lahore, Pakistan
| | - Sundas Arshad
- Department of Chemistry, Government College, Women University Sialkot, Kutchehry Road, Sialkot, Pakistan
| | - Muhammad Ali Hashmi
- Department of Chemistry, Division of Science & Technology, University of Education, 54770, Lahore, Pakistan
| | - Imran Majeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hassan Ali
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology H-12 Islamabad, Islamabad, 44000, Pakistan
| | - Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Science and Technology H-12 Islamabad, Islamabad, 44000, Pakistan
| |
Collapse
|
4
|
Vinck R, Dömötör O, Karges J, Jakubaszek M, Seguin J, Tharaud M, Guérineau V, Cariou K, Mignet N, Enyedy ÉA, Gasser G. In Situ Bioconjugation of a Maleimide-Functionalized Ruthenium-Based Photosensitizer to Albumin for Photodynamic Therapy. Inorg Chem 2023; 62:15510-15526. [PMID: 37708255 DOI: 10.1021/acs.inorgchem.3c01984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Maleimide-containing prodrugs can quickly and selectively react with circulating serum albumin following their injection in the bloodstream. The drug-albumin complex then benefits from longer blood circulation times and better tumor accumulation. Herein, we have applied this strategy to a previously reported highly phototoxic Ru polypyridyl complex-based photosensitizer to increase its accumulation at the tumor, reduce off-target cytotoxicity, and therefore improve its pharmacological profile. Specifically, two complexes were synthesized bearing a maleimide group: one complex with the maleimide directly incorporated into the bipyridyl ligand, and the other has a hydrophilic linker between the ligand and the maleimide group. Their interaction with albumin was studied in-depth, revealing their ability to efficiently bind both covalently and noncovalently to the plasma protein. A crucial finding is that the maleimide-functionalized complexes exhibited significantly lower cytotoxicity in noncancerous cells under dark conditions compared to the nonfunctionalized complex, which is a highly desirable property for a photosensitizer. The binding to albumin also led to a decrease in the phototoxicity of the Ru bioconjugates in comparison to the nonfunctionalized complex, probably due to a decreased cellular uptake. Unfortunately, this decrease in phototoxicity was not compensated by a dramatic increase in tumor accumulation, as was demonstrated in a tumor-bearing mouse model using inductively coupled plasma mass spectrometry (ICP-MS) studies. Consequently, this study provides valuable insight into the future design of in situ albumin-binding complexes for photodynamic therapy in order to maximize their effectiveness and realize their full potential.
Collapse
Affiliation(s)
- Robin Vinck
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, F-75005 Paris, France
| | - Orsolya Dömötör
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7. H-6720 Szeged, Hungary
| | - Johannes Karges
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, F-75005 Paris, France
| | - Marta Jakubaszek
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, F-75005 Paris, France
| | - Johanne Seguin
- Université Paris Cité, UTCBS, INSERM, CNRS, 75006 Paris, France
| | - Mickaël Tharaud
- Biogéochimie à l'Anthropocène des Eléments et Contaminants Emergents, Institut de Physique du Globe de Paris, 75005 Paris, France
| | - Vincent Guérineau
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, F-75005 Paris, France
| | - Nathalie Mignet
- Université Paris Cité, UTCBS, INSERM, CNRS, 75006 Paris, France
| | - Éva A Enyedy
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7. H-6720 Szeged, Hungary
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, F-75005 Paris, France
| |
Collapse
|
5
|
Kumar S, Riisom M, Jamieson SMF, Kavianinia I, Harris PWR, Metzler-Nolte N, Brimble MA, Hartinger CG. On-Resin Conjugation of the Ruthenium Anticancer Agent Plecstatin-1 to Peptide Vectors. Inorg Chem 2023; 62:14310-14317. [PMID: 37611203 DOI: 10.1021/acs.inorgchem.3c01718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Ruthenium piano-stool complexes have been explored for their anticancer activity and some promising compounds have been reported. Herein, we conjugated a derivative of plecstatin-1 to peptides in order to increase their cancer cell targeting ability. For this purpose, plecstatin-1 was modified at the arene ligand to introduce a functional amine handle (3), which resulted in a compound that showed similar activity in an in vitro anticancer activity assay. The cell-penetrating peptide TAT48-60, tumor-targeting neurotensin8-13, and plectin-targeting peptide were functionalized with succinyl or β-Ala-succinyl linkers under standard solid-phase peptide synthesis (SPPS) conditions to spatially separate the peptide backbones from the bioactive metal complexes. These modifications allowed for conjugating precursor 3 to the peptides on resin yielding the desired metal-peptide conjugates (MPCs), as confirmed by high-performance liquid chromatography (HPLC), NMR spectroscopy, and mass spectrometry (MS). The MPCs were studied for their behavior in aqueous solution and under acidic conditions and resembled that of the parent compound plecstatin-1. In in vitro anticancer activity studies in a small panel of cancer cell lines, the TAT-based MPCs showed the highest activity, while the other MPCs were virtually inactive. However, the MPCs were significantly less active than the small molecules plecstatin-1 and 3, which can be explained by the reduced cell uptake as determined by inductively coupled plasma MS (ICP-MS). Although the MPCs did not display potent anticancer activities, the developed conjugation strategy can be extended toward other metal complexes, which may be able to utilize the targeting properties of peptides.
Collapse
Affiliation(s)
- Saawan Kumar
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Mie Riisom
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Iman Kavianinia
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Nils Metzler-Nolte
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum 44801, Germany
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
6
|
Riaz Z, Lee BYT, Stjärnhage J, Movassaghi S, Söhnel T, Jamieson SMF, Shaheen MA, Hanif M, Hartinger CG. Anticancer Ru and Os complexes of N-(4-chlorophenyl)pyridine-2-carbothioamide: Substitution of the labile chlorido ligand with phosphines. J Inorg Biochem 2023; 241:112115. [PMID: 36731369 DOI: 10.1016/j.jinorgbio.2022.112115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/11/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
Half-sandwich MII(cym)Cl (cym = η6-p-cymene; M = Ru, Os) complexes of pyridinecarbothioamide (PCA) ligands have demonstrated potential as orally active anticancer agents. In order to investigate the impact of the substitution of the labile chlorido ligand with phosphorous donor ligands on the antiproliferative properties, the triphenylphosphine (PPh3) and 1,3,5-triaza-7-phophaadamantane (pta) analogues were prepared and characterized by spectroscopic techniques and the molecular structures of several complexes were determined by X-diffraction analysis. Interestingly, the molecular structures contained the PCA ligand deprotonated, presumably driven by the reduction in overall charge of the complex. Density Functional Theory (DFT) calculations suggested minor energy differences between the protonated and deprotonated forms. The aqueous stability and the reactivity with the amino acids l-histidine and l-cysteine were investigated by 1H NMR spectroscopy of representative examples. The most potent anticancer agents featured Ru or Os centers and a PPh3 ligand and showed IC50 values in the submicromolar range against four cancer cell lines. This suggests that the antiproliferative activity was mainly dependent on the lipophilic properties of the phosphine ligand with PPh3 having a significantly higher clog P value than pta.
Collapse
Affiliation(s)
- Zahid Riaz
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand; University of Sargodha, Department of Chemistry, Sargodha 40100, Pakistan
| | - Betty Y T Lee
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Julia Stjärnhage
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand
| | - Sanam Movassaghi
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand
| | - Tilo Söhnel
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | - Muhammad Hanif
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.
| | - Christian G Hartinger
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
7
|
Juszczak M, Kluska M, Kosińska A, Palusiak M, Rybarczyk‐Pirek AJ, Wzgarda‐Raj K, Rudolf B, Woźniak K. Cytotoxicity of piano‐stool ruthenium cyclopentadienyl complexes bearing different imidato ligands. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Michał Juszczak
- Faculty of Biology and Environmental Protection, Department of Molecular Genetics University of Lodz Lodz Poland
| | - Magdalena Kluska
- Faculty of Biology and Environmental Protection, Department of Molecular Genetics University of Lodz Lodz Poland
| | - Aneta Kosińska
- Faculty of Chemistry, Department of Organic Chemistry University of Lodz Lodz Poland
| | - Marcin Palusiak
- Faculty of Chemistry, Department of Physical Chemistry University of Lodz Lodz Poland
| | | | - Kinga Wzgarda‐Raj
- Faculty of Chemistry, Department of Physical Chemistry University of Lodz Lodz Poland
| | - Bogna Rudolf
- Faculty of Chemistry, Department of Organic Chemistry University of Lodz Lodz Poland
| | - Katarzyna Woźniak
- Faculty of Biology and Environmental Protection, Department of Molecular Genetics University of Lodz Lodz Poland
| |
Collapse
|
8
|
Lee BYT, Sullivan MP, Yano E, Tong KKH, Hanif M, Kawakubo-Yasukochi T, Jamieson SMF, Soehnel T, Goldstone DC, Hartinger CG. Anthracenyl Functionalization of Half-Sandwich Carbene Complexes: In Vitro Anticancer Activity and Reactions with Biomolecules. Inorg Chem 2021; 60:14636-14644. [PMID: 34528438 DOI: 10.1021/acs.inorgchem.1c01675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
N-Heterocyclic carbene (NHC) ligands are widely investigated in medicinal inorganic chemistry. Here, we report the preparation and characterization of a series of half-sandwich [M(L)(NHC)Cl2] (M = Ru, Os, Rh, Ir; L = cym/Cp*) complexes with a N-flanking anthracenyl moiety attached to imidazole- and benzimidazole-derived NHC ligands. The anticancer activity of the complexes was investigated in cell culture studies where, in comparison to a Rh derivative with an all-carbon-donor-atom-based ligand (5a), they were found to be cytotoxic with IC50 values in the low micromolar range. The Ru derivative 1a was chosen as a representative for stability studies as well as for biomolecule interaction experiments. It underwent partial chlorido/aqua ligand exchange in DMSO-d6/D2O to rapidly form an equilibrium in aqueous media. The reactions of 1a with biomolecules proceeded quickly and resulted in the formation of adducts with amino acids, DNA, and protein. Hen egg white lysozyme crystals were soaked with 1a, and the crystallographic analysis revealed an interaction with an l-aspartic acid residue (Asp119), resulting in the cleavage of the p-cymene ligand but the retention of the NHC moiety. Cell morphology studies for the Rh analog 3a suggested that the cytotoxicity is exerted via mechanisms different from that of cisplatin.
Collapse
Affiliation(s)
| | | | - Ena Yano
- OBT (Oral Health-Brain Health-Total Health) Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | - Tomoyo Kawakubo-Yasukochi
- OBT (Oral Health-Brain Health-Total Health) Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
9
|
Design concepts of half-sandwich organoruthenium anticancer agents based on bidentate bioactive ligands. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213950] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Valente A, Podolski-Renić A, Poetsch I, Filipović N, López Ó, Turel I, Heffeter P. Metal- and metalloid-based compounds to target and reverse cancer multidrug resistance. Drug Resist Updat 2021; 58:100778. [PMID: 34403910 DOI: 10.1016/j.drup.2021.100778] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
Drug resistance remains the major cause of cancer treatment failure especially at the late stage of the disease. However, based on their versatile chemistry, metal and metalloid compounds offer the possibility to design fine-tuned drugs to circumvent and even specifically target drug-resistant cancer cells. Based on the paramount importance of platinum drugs in the clinics, two main areas of drug resistance reversal strategies exist: overcoming resistance to platinum drugs as well as multidrug resistance based on ABC efflux pumps. The current review provides an overview of both aspects of drug design and discusses the open questions in the field. The areas of drug resistance covered in this article involve: 1) Altered expression of proteins involved in metal uptake, efflux or intracellular distribution, 2) Enhanced drug efflux via ABC transporters, 3) Altered metabolism in drug-resistant cancer cells, 4) Altered thiol or redox homeostasis, 5) Altered DNA damage recognition and enhanced DNA damage repair, 6) Impaired induction of apoptosis and 7) Altered interaction with the immune system. This review represents the first collection of metal (including platinum, ruthenium, iridium, gold, and copper) and metalloid drugs (e.g. arsenic and selenium) which demonstrated drug resistance reversal activity. A special focus is on compounds characterized by collateral sensitivity of ABC transporter-overexpressing cancer cells. Through this approach, we wish to draw the attention to open research questions in the field. Future investigations are warranted to obtain more insights into the mechanisms of action of the most potent compounds which target specific modalities of drug resistance.
Collapse
Affiliation(s)
- Andreia Valente
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Isabella Poetsch
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Nenad Filipović
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Gou Y, Huang G, Li J, Yang F, Liang H. Versatile delivery systems for non-platinum metal-based anticancer therapeutic agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Steel TR, Walsh F, Wieczorek-Błauż A, Hanif M, Hartinger CG. Monodentately-coordinated bioactive moieties in multimodal half-sandwich organoruthenium anticancer agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213890] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Impact of the Metal Center and Leaving Group on the Anticancer Activity of Organometallic Complexes of Pyridine-2-carbothioamide. Molecules 2021; 26:molecules26040833. [PMID: 33562622 PMCID: PMC7914729 DOI: 10.3390/molecules26040833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 11/17/2022] Open
Abstract
RuII(cym)Cl (cym = η6-p-cymene) complexes of pyridinecarbothioamides have shown potential for development as orally active anticancer metallodrugs, underlined by their high selectivity towards plectin as the molecular target. In order to investigate the impact of the metal center on the anticancer activity and their physicochemical properties, the Os(cym), Rh- and Ir(Cp*) (Cp* = pentamethylcyclopentadienyl) analogues of the most promising and orally active compound plecstatin 2 were prepared and characterized by spectroscopic techniques and X-ray diffraction analysis. Dissolution in aqueous medium results in quick ligand exchange reactions; however, over time no further changes in the 1H NMR spectra were observed. The Rh- and Ir(Cp*) complexes were investigated for their reactions with amino acids, and while they reacted with Cys, no reaction with His was observed. Studies on the in vitro anticancer activity identified the Ru derivatives as the most potent, independent of their halido leaving group, while the Rh derivative was more active than the Ir analogue. This demonstrates that the metal center has a significant impact on the anticancer activity of the compound class.
Collapse
|
14
|
Adams M, Sullivan MP, Tong KKH, Goldstone DC, Hanif M, Jamieson SMF, Hartinger CG. Mustards-Derived Terpyridine-Platinum Complexes as Anticancer Agents: DNA Alkylation vs Coordination. Inorg Chem 2021; 60:2414-2424. [PMID: 33497565 DOI: 10.1021/acs.inorgchem.0c03317] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of bifunctional platinum complexes with the ability to interact with DNA via different binding modes is of interest in anticancer metallodrug research. Therefore, we report platinum(II) terpyridine complexes to target DNA by coordination and/or through a tethered alkylating moiety. The platinum complexes were evaluated for their in vitro antiproliferative properties against the human cancer cell lines HCT116 (colorectal), SW480 (colon), NCI-H460 (non-small cell lung), and SiHa (cervix) and generally exhibited potent antiproliferative activity although lower than their respective terpyridine ligands. 1H NMR spectroscopy and/or ESI-MS studies on the aqueous stability and reactivity with various small biomolecules, acting as protein and DNA model compounds, were used to establish potential modes of action for these complexes. These investigations indicated rapid binding of complex PtL3 to the biomolecules through coordination to the Pt center, while PtL4 in addition alkylated 9-ethylguanine. PtL3 was investigated for its reactivity to the model protein hen egg white lysozyme (HEWL) by protein crystallography which allowed identification of the Nδ1 atom of His15 as the binding site.
Collapse
Affiliation(s)
- Muneebah Adams
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Matthew P Sullivan
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kelvin K H Tong
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - David C Goldstone
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Muhammad Hanif
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
15
|
Ol'shevskaya VA, Alpatova VM, Makarenkov AV, Kononova EG, Smol’yakov AF, Peregudov AS, Rys EG. Synthesis of maleimide-functionalized carboranes and their utility in Michael addition reactions. NEW J CHEM 2021. [DOI: 10.1039/d1nj02499j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Carboranyl maleimides were obtained and their reactivity with S- and N-nucleophiles was demonstrated.
Collapse
Affiliation(s)
- Valentina A. Ol'shevskaya
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| | - Victoria M. Alpatova
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| | - Anton V. Makarenkov
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| | - Elena G. Kononova
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| | - Alexander F. Smol’yakov
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| | - Alexander S. Peregudov
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| | - Evgeny G. Rys
- A.N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| |
Collapse
|
16
|
Pursuwani BH, Bhatt BS, Vaidya FU, Pathak C, Patel MN. Synthesis, Characterization, and Biological Evaluation of Osmium(IV) Pyrazole Carbothioamide Complexes. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1852581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Bharat H. Pursuwani
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Bhupesh S. Bhatt
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Foram U. Vaidya
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Chandramani Pathak
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Mohan N. Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| |
Collapse
|
17
|
Daubit IM, Sullivan MP, John M, Goldstone DC, Hartinger CG, Metzler-Nolte N. A Combined Spectroscopic and Protein Crystallography Study Reveals Protein Interactions of Rh I(NHC) Complexes at the Molecular Level. Inorg Chem 2020; 59:17191-17199. [PMID: 33180473 DOI: 10.1021/acs.inorgchem.0c02438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While most Rh-N-heterocyclic carbene (NHC) complexes currently investigated in anticancer research contain a Rh(III) metal center, an increasing amount of research is focusing on the cytotoxic activity and mode of action of square-planar [RhCl(COD)(NHC)] (where COD = 1,5-cyclooctadiene) which contains a Rh(I) center. The enzyme thioredoxin reductase (TrxR) and the protein albumin have been proposed as potential targets, but the molecular processes taking place upon protein interaction remain elusive. Herein, we report the preparation of peptide-conjugated and its nonconjugated parent [RhCl(COD)(NHC)] complexes, an in-depth investigation of both their stability in solution, and a crystallographic study of protein interaction. The organorhodium compounds showed a rapid loss of the COD ligand and slow loss of the NHC ligand in aqueous solution. These ligand exchange reactions were reflected in studies on the interaction with hen egg white lysozyme (HEWL) as a model protein in single-crystal X-ray crystallographic investigations. Upon treatment of HEWL with an amino acid functionalized [RhCl(COD)(NHC)] complex, two distinct rhodium adducts were found initially after 7 d of incubation at His15 and after 4 weeks also at Lys33. In both cases, the COD and chlorido ligands had been substituted with aqua and/or hydroxido ligands. While the histidine (His) adduct also indicated a loss of the NHC ligand, the lysine (Lys) adduct retained the NHC core derived from the amino acid l-histidine. In either case, an octahedral coordination environment of the metal center indicates oxidation to Rh(III). This investigation gives the first insight on the interaction of Rh(I)(NHC) complexes and proteins at the molecular level.
Collapse
Affiliation(s)
- Isabelle M Daubit
- Inorganic Chemistry I - Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Matthew P Sullivan
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Milena John
- Inorganic Chemistry I - Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - David C Goldstone
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Nils Metzler-Nolte
- Inorganic Chemistry I - Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
18
|
Steel TR, Hartinger CG. Metalloproteomics for molecular target identification of protein-binding anticancer metallodrugs. Metallomics 2020; 12:1627-1636. [PMID: 33063808 DOI: 10.1039/d0mt00196a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteomics has played an important role in elucidating the fundamental processes occuring in living cells. Translating these methods to metallodrug research ('metalloproteomics') has provided a means for molecular target identification of metal-based anticancer agents which should signifcantly advance the research field. In combination with biological assays, these techniques have enabled the mechanisms of action of metallodrugs to be linked to their interactions with molecular targets and aid understanding of their biological properties. Such investigations have profoundly increased our knowledge of the complex and dynamic nature of metallodrug-biomolecule interactions and have provided, at least for some compound types, a more detailed picture on their specific protein-binding patterns. This perspective highlights the progression of metallodrug proteomics research for the identification of non-DNA targets from standard analytical techniques to powerful metallodrug pull-down methods.
Collapse
Affiliation(s)
- Tasha R Steel
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | | |
Collapse
|
19
|
Pyrrole thioamide complexes of the d8 metals platinum(II), palladium(II) and gold(III). Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Hanif M, Hartinger CG. From the hypothesis-driven development of organometallic anticancer drugs to new methods in mode of action studies. Med Chem 2020. [DOI: 10.1016/bs.adioch.2019.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Ol’shevskaya VA, Kononova EG, Zaitsev AV. Fluorinated maleimide-substituted porphyrins and chlorins: synthesis and characterization. Beilstein J Org Chem 2019; 15:2704-2709. [PMID: 31807205 PMCID: PMC6880841 DOI: 10.3762/bjoc.15.263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/29/2019] [Indexed: 11/23/2022] Open
Abstract
Maleimide-containing fluorinated porphyrins and chlorins were prepared based on the reaction of Zn(II) or Ni(II) complexes of 5,10,15,20-tetrakis(4-amino-2,3,5,6-tetrafluorophenyl)porphyrin and chlorin with maleic anhydride. Porphyrin maleimide derivatives were also prepared by the reaction of 5,10,15,20-tetrakis(4-azido-2,3,5,6-tetrafluorophenyl)porphyrinato Zn(II) or Ni(II) with N-propargylmaleimide via the CuAAC click reaction to afford fluorinated porphyrin-triazole-maleimide conjugates. New maleimide derivatives were isolated in reasonable yields and identified by UV-vis, 1H NMR, 19F NMR spectroscopy and mass-spectrometry.
Collapse
Affiliation(s)
- Valentina A Ol’shevskaya
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991, Vavilova St. 28, Moscow, Russian Federation
| | - Elena G Kononova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991, Vavilova St. 28, Moscow, Russian Federation
| | - Andrei V Zaitsev
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991, Vavilova St. 28, Moscow, Russian Federation
| |
Collapse
|
22
|
Zhao Z, Hu R, Shi H, Wang Y, Ji L, Zhang P, Zhang Q. Design of ruthenium-albumin hydrogel for cancer therapeutics and luminescent imaging. J Inorg Biochem 2019; 194:19-25. [DOI: 10.1016/j.jinorgbio.2019.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/26/2019] [Accepted: 02/03/2019] [Indexed: 02/08/2023]
|
23
|
Zhang P, Huang H, Banerjee S, Clarkson GJ, Ge C, Imberti C, Sadler PJ. Nucleus-Targeted Organoiridium-Albumin Conjugate for Photodynamic Cancer Therapy. Angew Chem Int Ed Engl 2019; 58:2350-2354. [PMID: 30552796 PMCID: PMC6468315 DOI: 10.1002/anie.201813002] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Indexed: 12/19/2022]
Abstract
An organoiridium-albumin bioconjugate (Ir1-HSA) was synthesized by reaction of a pendant maleimide ligand with human serum albumin. The phosphorescence of Ir1-HSA was enhanced significantly compared to parent complex Ir1. The long phosphorescence lifetime and high 1 O2 quantum yield of Ir1-HSA are highly favorable properties for photodynamic therapy. Ir1-HSA mainly accumulated in the nucleus of living cancer cells and showed remarkable photocytotoxicity against a range of cancer cell lines and tumor spheroids (light IC50 ; 0.8-5 μm, photo-cytotoxicity index PI=40-60), while remaining non-toxic to normal cells and normal cell spheroids, even after photo-irradiation. This nucleus-targeting organoiridium-albumin is a strong candidate photosensitizer for anticancer photodynamic therapy.
Collapse
Affiliation(s)
- Pingyu Zhang
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen)Sun Yat-sen UniversityGuangzhou510275China
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Samya Banerjee
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Guy J. Clarkson
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Chen Ge
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
| | - Cinzia Imberti
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Peter J. Sadler
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
24
|
Parveen S, Tong KKH, Khawar Rauf M, Kubanik M, Shaheen MA, Söhnel T, Jamieson SMF, Hanif M, Hartinger CG. Coordination Chemistry of Organoruthenium Compounds with Benzoylthiourea Ligands and their Biological Properties. Chem Asian J 2019; 14:1262-1270. [DOI: 10.1002/asia.201801798] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/21/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Shahida Parveen
- School of Chemical SciencesUniversity of Auckland Private Bag 92019 Auckland 1142 New Zealand
- Department of ChemistryUniversity of Sargodha Sargodha 40100 Pakistan
| | - Kelvin K. H. Tong
- School of Chemical SciencesUniversity of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - Muhammad Khawar Rauf
- Office of Research, Innovation and CommercializationQuaid-I-Azam University Islamabad 45320 Pakistan
| | - Mario Kubanik
- School of Chemical SciencesUniversity of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | | | - Tilo Söhnel
- School of Chemical SciencesUniversity of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - Stephen M. F. Jamieson
- Auckland Cancer Society Research CentreUniversity of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - Muhammad Hanif
- School of Chemical SciencesUniversity of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - Christian G. Hartinger
- School of Chemical SciencesUniversity of Auckland Private Bag 92019 Auckland 1142 New Zealand
| |
Collapse
|
25
|
Ashraf A, Aman F, Movassaghi S, Zafar A, Kubanik M, Siddiqui WA, Reynisson J, Söhnel T, Jamieson SMF, Hanif M, Hartinger CG. Structural Modifications of the Antiinflammatory Oxicam Scaffold and Preparation of Anticancer Organometallic Compounds. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00751] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Adnan Ashraf
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Farhana Aman
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Sanam Movassaghi
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ayesha Zafar
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Mario Kubanik
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | - Jóhannes Reynisson
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Tilo Söhnel
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Stephen M. F. Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Muhammad Hanif
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Christian G. Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
26
|
Pd(II)-based heteroleptic complexes with N-(acyl)-N′, N′-(disubstituted)thioureas and phosphine ligands: Synthesis, characterization and cytotoxic studies against lung squamous, breast adenocarcinoma and Leishmania tropica. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.04.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
27
|
Arshad J, Hanif M, Zafar A, Movassaghi S, Tong KKH, Reynisson J, Kubanik M, Waseem A, Söhnel T, Jamieson SMF, Hartinger CG. Organoruthenium and Organoosmium Complexes of 2-Pyridinecarbothioamides Functionalized with a Sulfonamide Motif: Synthesis, Cytotoxicity and Biomolecule Interactions. Chempluschem 2018; 83:612-619. [PMID: 31950635 DOI: 10.1002/cplu.201800194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/22/2018] [Indexed: 11/07/2022]
Abstract
Anticancer-active RuII -η6 -p-cymene complexes of bioactive 2-pyridinecarbothioamide ligands have been shown to have high selectivity for plectin and can be administered orally. Reported herein is the functionalization of a 2-pyridinecarbothioamide with a sulfonamide group and its conversion into M-η6 -p-cymene complexes (M = Ru, Os). The presence of a sulfonamide moiety in many organic drugs and metal complexes endows these agents with interesting biological properties and can transform the latter into multi-targeted agents. The compounds were characterized with standard methods and the in vitro anticancer activity data was compared with studies on the hydrolytic stability of the complexes and their reactivity to small biomolecules. A molecular modeling study revealed plausible modes of binding of the complexes in the catalytic pocket of carbonic anhydrase II.
Collapse
Affiliation(s)
- Jahanzaib Arshad
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.,Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Hanif
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Ayesha Zafar
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Sanam Movassaghi
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Kelvin K H Tong
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Jóhannes Reynisson
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Mario Kubanik
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Amir Waseem
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Tilo Söhnel
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| |
Collapse
|
28
|
Stumper A, Lämmle M, Mengele AK, Sorsche D, Rau S. One Scaffold, Many Possibilities - Copper(I)-Catalyzed Azide-Alkyne Cycloadditions, Strain-Promoted Azide-Alkyne Cycloadditions, and Maleimide-Thiol Coupling of Ruthenium(II) Polypyridyl Complexes. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anne Stumper
- Institute of Inorganic Chemistry, Materials and Catalysis; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Martin Lämmle
- Institute of Inorganic Chemistry, Materials and Catalysis; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Alexander K. Mengele
- Institute of Inorganic Chemistry, Materials and Catalysis; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Dieter Sorsche
- Institute of Inorganic Chemistry, Materials and Catalysis; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Sven Rau
- Institute of Inorganic Chemistry, Materials and Catalysis; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
29
|
Holtkamp HU, Movassaghi S, Morrow SJ, Kubanik M, Hartinger CG. Metallomic study on the metabolism of RAPTA-C and cisplatin in cell culture medium and its impact on cell accumulation. Metallomics 2018; 10:455-462. [DOI: 10.1039/c8mt00024g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The different extracellular speciation of cisplatin and the organoruthenium developmental anticancer agent RAPTA-C impacts the accumulation in cancer cells.
Collapse
Affiliation(s)
- Hannah U. Holtkamp
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| | - Sanam Movassaghi
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| | - Stuart J. Morrow
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| | - Mario Kubanik
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| | | |
Collapse
|
30
|
Sullivan MP, Nieuwoudt MK, Bowmaker GA, Lam NYS, Truong D, Goldstone DC, Hartinger CG. Unexpected arene ligand exchange results in the oxidation of an organoruthenium anticancer agent: the first X-ray structure of a protein–Ru(carbene) adduct. Chem Commun (Camb) 2018; 54:6120-6123. [DOI: 10.1039/c8cc02433b] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The first crystallographic study of a Ru(carbene)–protein adduct is complemented by EPR spectroscopy showing Ru oxidation upon binding.
Collapse
Affiliation(s)
- Matthew P. Sullivan
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
- School of Biological Sciences
| | - Michél K. Nieuwoudt
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
- The Photon Factory
| | - Graham A. Bowmaker
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| | - Nelson Y. S. Lam
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| | - Dianna Truong
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| | - David C. Goldstone
- School of Biological Sciences
- University of Auckland
- Auckland 1142
- New Zealand
| | | |
Collapse
|
31
|
Ferraro G, Mansour AM, Merlino A. Exploring the interactions between model proteins and Pd(ii) or Pt(ii) compounds bearing charged N,N-pyridylbenzimidazole bidentate ligands by X-ray crystallography. Dalton Trans 2018; 47:10130-10138. [DOI: 10.1039/c8dt01663a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
X-ray structure of the adducts formed between lysozyme and Pd(ii) and Pt(ii) compounds bearing N,N-pyridylbenzimidazole derivatives with an alkylated sulfonate or phosphonium side chain are reported.
Collapse
Affiliation(s)
- Giarita Ferraro
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- 80126 Napoli
- Italy
| | - Ahmed M. Mansour
- Department of Chemistry
- Faculty of Science
- Cairo University
- Giza
- Egypt
| | - Antonello Merlino
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- 80126 Napoli
- Italy
| |
Collapse
|
32
|
Arshad J, Hanif M, Movassaghi S, Kubanik M, Waseem A, Söhnel T, Jamieson SM, Hartinger CG. Anticancer Ru(η6-p-cymene) complexes of 2-pyridinecarbothioamides: A structure–activity relationship study. J Inorg Biochem 2017; 177:395-401. [DOI: 10.1016/j.jinorgbio.2017.08.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 11/28/2022]
|
33
|
|
34
|
Sullivan MP, Groessl M, Meier SM, Kingston RL, Goldstone DC, Hartinger CG. The metalation of hen egg white lysozyme impacts protein stability as shown by ion mobility mass spectrometry, differential scanning calorimetry, and X-ray crystallography. Chem Commun (Camb) 2017; 53:4246-4249. [DOI: 10.1039/c6cc10150j] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Metalation of lysozyme with anticancer organometallics results in protein destabilisation, probably relevant in metallodrug mode of action.
Collapse
Affiliation(s)
- Matthew P. Sullivan
- School of Chemical Sciences
- University of Auckland
- Auckland
- New Zealand
- School of Biological Sciences
| | | | - Samuel M. Meier
- Institute of Analytical Chemistry
- University of Vienna
- Vienna
- Austria
| | | | | | | |
Collapse
|