1
|
Vergaro V, Dell'Anna MM, Shahsavari HR, Baldassarre F, Migoni D, Mastrorilli P, Fanizzi FP, Ciccarella G. Synthesis of a light-responsive platinum curcumin complex, chemical and biological investigations and delivery to tumor cells by means of polymeric nanoparticles. NANOSCALE ADVANCES 2023; 5:5340-5351. [PMID: 37767039 PMCID: PMC10521244 DOI: 10.1039/d3na00200d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/04/2023] [Indexed: 09/29/2023]
Abstract
Platinum-based anticancer drugs are common in chemotherapy, but problems such as systemic toxicity and acquired resistance of some tumors hamper their clinical applications and therapeutic efficacy. It is necessary to synthesize Pt-based drugs and explore strategies to reduce side effects and improve pharmacokinetic profiles. Photo-responsive chemotherapeutics have emerged as an alternative strategy against several cancers, as photoactivation offers spatial selectivity and fewer side effects. Here, we combine chemical synthesis and nanotechnology to create a multifunctional platinum drug delivery system based on the novel metal complex [Pt(ppy)(curc)] (ppy = deprotonated 2-phenylpyridine, curc = deprotonated curcumin)] embodying the naturally occurring bioactive molecule, curcumin. The ultrasonication method coupled with the layer-by-layer technology was employed to produce nanocolloids, which demonstrated a good biocompatibility, higher solubility in aqueous solution, stability, large drug loading, and good biological activity in comparison with the free drug. In vitro release experiments revealed that the polymeric nanoformulation is relatively stable under physiological conditions (pH = 7.4 and 37 °C) but sensitive to acidic environments (pH = 5.6 and 37 °C) which would trigger the release of the loaded drug. Our approach modifies the bioavailability of this Pt-based drug increasing its therapeutic action in terms of both cytotoxic and anti-metastasis effects.
Collapse
Affiliation(s)
- Viviana Vergaro
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento Via Monteroni 73100 Lecce Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche Via Monteroni 73100 Lecce Italy
| | | | - Hamid R Shahsavari
- DICATECh, Politecnico di Bari via Orabona, 4 70125 Bari Italy
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 Iran
| | - Francesca Baldassarre
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento Via Monteroni 73100 Lecce Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche Via Monteroni 73100 Lecce Italy
| | - Danilo Migoni
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento Via Monteroni 73100 Lecce Italy
| | | | - Francesco Paolo Fanizzi
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento Via Monteroni 73100 Lecce Italy
| | - Giuseppe Ciccarella
- Biological and Environmental Sciences Department, UdR INSTM of Lecce University of Salento Via Monteroni 73100 Lecce Italy
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche Via Monteroni 73100 Lecce Italy
| |
Collapse
|
2
|
Silva RTC, Guidotti-Takeuchi M, Peixoto JLM, Demarqui FM, Mori AP, Dumont CF, Ferreira GRA, Pereira GDM, Rossi DA, Corbi PP, Pavan FR, Rezende Júnior CDO, Melo RTD, Guerra W. New Palladium(II) Complexes Containing Methyl Gallate and Octyl Gallate: Effect against Mycobacterium tuberculosis and Campylobacter jejuni. Molecules 2023; 28:molecules28093887. [PMID: 37175297 PMCID: PMC10179749 DOI: 10.3390/molecules28093887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 05/15/2023] Open
Abstract
This work describes the preparation, characterization and antimicrobial activity of four palladium(II) complexes, namely, [Pd(meg)(1,10-phen)] 1, [Pd(meg)(PPh3)2] 2, [Pd(og)(1,10-phen)] 3 and [Pd(og)(PPh3)2] 4, where meg = methyl gallate, og = octyl gallate, 1,10-phen = 1,10-phenanthroline and PPh3 = triphenylphosphine. As to the chemical structures, spectral and physicochemical studies of 1-4 indicated that methyl or octyl gallate coordinates a palladium(II) ion through two oxygen atoms upon deprotonation. A chelating bidentate phenanthroline or two triphenylphosphine molecules complete the coordination sphere of palladium(II) ion, depending on the complex. The metal complexes were tested against the Mycobacterium tuberculosis H37Rv strain and 2 exhibited high activity (MIC = 3.28 μg/mL). As to the tests with Campylobacter jejuni, complex 1 showed a significant effect in reducing bacterial population (greater than 7 log CFU) in planktonic forms, as well as in the biomass intensity (IBF: 0.87) when compared to peracetic acid (IBF: 1.11) at a concentration of 400 μg/mL. The effect provided by these complexes has specificity according to the target microorganism and represent a promising alternative for the control of microorganisms of public health importance.
Collapse
Affiliation(s)
| | - Micaela Guidotti-Takeuchi
- Laboratory of Experimental Molecular Epidemiology, Federal University of Uberlândia-UFU, Umuarama Campus, Uberlândia 87504-000, MG, Brazil
| | - Jéssica Laura Miranda Peixoto
- Laboratory of Experimental Molecular Epidemiology, Federal University of Uberlândia-UFU, Umuarama Campus, Uberlândia 87504-000, MG, Brazil
| | - Fernanda Manaia Demarqui
- Faculty of Pharmaceutical Sciences, Paulista State University-UNESP, Araraquara Campus, Araraquara 14800-060, SP, Brazil
| | - Ananda Paula Mori
- Institute of Chemistry, Federal University of Uberlândia-UFU, Santa Mônica Campus, Uberlândia 38402-018, MG, Brazil
| | - Carolyne Ferreira Dumont
- Laboratory of Experimental Molecular Epidemiology, Federal University of Uberlândia-UFU, Umuarama Campus, Uberlândia 87504-000, MG, Brazil
| | | | | | - Daise Aparecida Rossi
- Laboratory of Experimental Molecular Epidemiology, Federal University of Uberlândia-UFU, Umuarama Campus, Uberlândia 87504-000, MG, Brazil
| | - Pedro Paulo Corbi
- Institute of Chemistry, State University of Campinas-UNICAMP, Campinas 13083-872, SP, Brazil
| | - Fernando Rogério Pavan
- Faculty of Pharmaceutical Sciences, Paulista State University-UNESP, Araraquara Campus, Araraquara 14800-060, SP, Brazil
| | | | - Roberta Torres de Melo
- Laboratory of Experimental Molecular Epidemiology, Federal University of Uberlândia-UFU, Umuarama Campus, Uberlândia 87504-000, MG, Brazil
| | - Wendell Guerra
- Institute of Chemistry, Federal University of Uberlândia-UFU, Santa Mônica Campus, Uberlândia 38402-018, MG, Brazil
| |
Collapse
|
3
|
Evaluation of Dithiocarbamate-Modified Silica for Cisplatin Removal from Water. Processes (Basel) 2023. [DOI: 10.3390/pr11020472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Despite the globally increasing use of platinum-based cytostatic drugs in the treatment of several types of cancer, only limited attention has been paid to developing a treatment for contaminated liquid samples originating from hospitals, laboratories and manufacturing facilities before and after their administration. In this work, we assess the efficiency of a low-cost adsorbent material, a dithiocarbamate-functionalized silica, in removing cisplatin from a solution containing it in the 0.5–150 mg L−1 concentration range. The advantage of having a surface-functionalized silica is that adsorption can occur by either non-covalent interaction or surface complexation. In the latter case platinum(II) is de-complexed and the original drug is no longer present. Adsorption occurs through a first rapid step, followed by a second slower process. This is likely due to the fact that in our operating conditions (0.9% w/v NaCl), only the original compound is present, for which ligand substitution is known to proceed slowly. The interesting performance, even at low metal concentration, and facile synthesis of the material mean it could be adapted for other applications where the recycling of platinum can be realized.
Collapse
|
4
|
Scarpelli F, Ionescu A, Crispini A, Marino N, Di Maio G, La Deda M, Godbert N, Aiello I. Structural investigation of anionic cyclometalated Pt(II)-tetrabromocatecholate complexes: quasi-halogen bonding and elusive polymorphism at play. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2132483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Francesca Scarpelli
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), Dipartimento di Chimica e Tecnologie Chimiche, Universitá della Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Andreea Ionescu
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), Dipartimento di Chimica e Tecnologie Chimiche, Universitá della Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Alessandra Crispini
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), Dipartimento di Chimica e Tecnologie Chimiche, Universitá della Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Nadia Marino
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), Dipartimento di Chimica e Tecnologie Chimiche, Universitá della Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Giuseppe Di Maio
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), Dipartimento di Chimica e Tecnologie Chimiche, Universitá della Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Massimo La Deda
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), Dipartimento di Chimica e Tecnologie Chimiche, Universitá della Calabria, Arcavacata di Rende, Cosenza, Italy
- CNR NANOTEC-Istituto di Nanotecnologia U.O.S. Cosenza, Arcavacata di Rende, Cosenza, Italy
| | - Nicolas Godbert
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), Dipartimento di Chimica e Tecnologie Chimiche, Universitá della Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Iolinda Aiello
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), Dipartimento di Chimica e Tecnologie Chimiche, Universitá della Calabria, Arcavacata di Rende, Cosenza, Italy
- CNR NANOTEC-Istituto di Nanotecnologia U.O.S. Cosenza, Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
5
|
Low-Intensity Light-Responsive Anticancer Activity of Platinum(II) Complex Nanocolloids on 2D and 3D In Vitro Cancer Cell Model. Bioinorg Chem Appl 2022; 2022:9571217. [PMID: 35502219 PMCID: PMC9056248 DOI: 10.1155/2022/9571217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to evaluate the therapeutic efficacy of low-intensity visible light responsive nanocolloids of a Pt-based drug using a 2D and three-dimensional (3D) in vitro cancer cell model. Biocompatible and biodegradable polymeric nanocolloids, obtained using the ultrasonication method coupled with Layer by Layer technology, were characterized in terms of size (100 ± 20 nm), physical stability, drug loading (78%), and photoactivation through spectroscopy studies. The in vitro biological effects were assessed in terms of efficacy, apoptosis induction, and DNA-Pt adducts formation. Biological experiments were performed both in dark and under visible light irradiation conditions, exploiting the complex photochemical properties. The light-stimuli responsive nanoformulation gave a significant enhancement in drug bioactivity. This allowed us to achieve satisfying results by using nanomolar drug concentration (50 nM), which was ineffective in darkness condition. Furthermore, our nanocolloids were validated in 3D in vitro spheroids using confocal microscopy and cytofluorimetric assay to compare their behavior on culture in 2D monolayers. The obtained results confirmed that these nanocolloids are promising tools for delivering Pt-based drugs.
Collapse
|
6
|
Abstract
The uncontrolled release of pharmaceutical drugs into the environment raised serious concerns in the last decades as they can potentially exert adverse effects on living organisms even at the low concentrations at which they are typically found. Among them, platinum based cytostatic drugs (Pt CDs) are among the most used drugs in cancer treatments which are administered via intravenous infusion and released partially intact or as transformation products. In this review, the studies on environmental occurrence, transformation, potential ecotoxicity, and possible treatment for the removal of platinum cytostatic compounds are revised. The analysis of the literature highlighted the generally low total platinum concentration values (from a few tens of ng L−1 to a few hundred μg L−1) found in hospital effluents. Additionally, several studies highlighted how hospitals are sources of a minor fraction of the total Pt CDs found in the environment due to the slow excretion rate which is longer than the usual treatment durations. Only some data about the impact of the exposure to low levels of Pt CDs on the health of flora and fauna are present in literature. In some cases, adverse effects have been shown to occur in living organisms, even at low concentrations. Further ecotoxicity data are needed to support or exclude their chronic effects on the ecosystem. Finally, fundamental understanding is required on the platinum drugs removal by MBR, AOPs, technologies, and adsorption.
Collapse
|
7
|
Veclani D, Tolazzi M, Cerón-Carrasco JP, Melchior A. Intercalation Ability of Novel Monofunctional Platinum Anticancer Drugs: A Key Step in Their Biological Action. J Chem Inf Model 2021; 61:4391-4399. [PMID: 34156233 PMCID: PMC8479807 DOI: 10.1021/acs.jcim.1c00430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Phenanthriplatin
(PtPPH) is a monovalent platinum(II)-based complex
with a large cytotoxicity against cancer cells. Although the aqua-activated
drug has been assumed to be the precursor for DNA damage, it is still
under debate whether the way in which that metallodrug attacks to
DNA is dominated by a direct binding to a guanine base or rather by
an intercalated intermediate product. Aiming to capture the mechanism
of action of PtPPH, the present contribution used theoretical tools
to systematically assess the sequence of all possible mechanisms on
drug activation and reactivity, for example, hydrolysis, intercalation,
and covalent damage to DNA. Ab initio quantum mechanical
(QM) methods, hybrid QM/QM′ schemes, and independent gradient
model approaches are implemented in an unbiased protocol. The performed
simulations show that the cascade of reactions is articulated in three
well-defined stages: (i) an early and fast intercalation of the complex
between the DNA bases, (ii) a subsequent hydrolysis reaction that
leads to the aqua-activated form, and (iii) a final formation of the
covalent bond between PtPPH and DNA at a guanine site. The permanent
damage to DNA is consequently driven by that latter bond to DNA but
with a simultaneous π–π intercalation of the phenanthridine
into nucleobases. The impact of the DNA sequence and the lateral backbone
was also discussed to provide a more complete picture of the forces
that anchor the drug into the double helix.
Collapse
Affiliation(s)
- Daniele Veclani
- Dipartimento Politecnico di Ingegneria e Architettura (DPIA), Laboratori di Chimica, Università di Udine, via delle Scienze 99, 33100 Udine, Italy
| | - Marilena Tolazzi
- Dipartimento Politecnico di Ingegneria e Architettura (DPIA), Laboratori di Chimica, Università di Udine, via delle Scienze 99, 33100 Udine, Italy
| | - José P Cerón-Carrasco
- Reconocimiento y Encapsulación Molecular, Universidad Católica San Antonio de Murcia (UCAM). Campus de los Jerónimos, 30107 Murcia, Spain
| | - Andrea Melchior
- Dipartimento Politecnico di Ingegneria e Architettura (DPIA), Laboratori di Chimica, Università di Udine, via delle Scienze 99, 33100 Udine, Italy
| |
Collapse
|
8
|
Molecular Interpretation of Pharmaceuticals’ Adsorption on Carbon Nanomaterials: Theory Meets Experiments. Processes (Basel) 2020. [DOI: 10.3390/pr8060642] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ability of carbon-based nanomaterials (CNM) to interact with a variety of pharmaceutical drugs can be exploited in many applications. In particular, they have been studied both as carriers for in vivo drug delivery and as sorbents for the treatment of water polluted by pharmaceuticals. In recent years, the large number of experimental studies was also assisted by computational work as a tool to provide understanding at molecular level of structural and thermodynamic aspects of adsorption processes. Quantum mechanical methods, especially based on density functional theory (DFT) and classical molecular dynamics (MD) simulations were mainly applied to study adsorption/release of various drugs. This review aims to compare results obtained by theory and experiments, focusing on the adsorption of three classes of compounds: (i) simple organic model molecules; (ii) antimicrobials; (iii) cytostatics. Generally, a good agreement between experimental data (e.g. energies of adsorption, spectroscopic properties, adsorption isotherms, type of interactions, emerged from this review) and theoretical results can be reached, provided that a selection of the correct level of theory is performed. Computational studies are shown to be a valuable tool for investigating such systems and ultimately provide useful insights to guide CNMs materials development and design.
Collapse
|
9
|
Burke KJ, Stephens LJ, Werrett MV, Andrews PC. Bismuth(III) Flavonolates: The Impact of Structural Diversity on Antibacterial Activity, Mammalian Cell Viability and Cellular Uptake. Chemistry 2020; 26:7657-7671. [PMID: 32297355 DOI: 10.1002/chem.202000562] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/01/2020] [Indexed: 12/16/2022]
Abstract
A series of homoleptic and heteroleptic bismuth(III) flavonolate complexes derived from six flavonols of varying substitution have been synthesised and structurally characterised. The complexes were evaluated for antibacterial activity towards several problematic Gram-positive (Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus (VRE)) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria. The cell viability of COS-7 (monkey kidney) cells treated with the bismuth flavonolates was also studied to determine the effect of the complexes on mammalian cells. The heteroleptic complexes [BiPh(L)2 ] (in which L=flavonolate) showed good antibacterial activity towards all of the bacteria but reduced COS-7 cell viability in a concentration-dependent manner. The homoleptic complexes [Bi(L)3 ] exhibited activity towards the Gram-positive bacteria and showed low toxicity towards the mammalian cell line. Bismuth uptake studies in VRE and COS-7 cells treated with the bismuth flavonolate complexes indicated that Bi accumulation is influenced by both the substitution of the flavonolate ligands and the degree of substitution at the bismuth centre.
Collapse
Affiliation(s)
- Kirralee J Burke
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Liam J Stephens
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Melissa V Werrett
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Philip C Andrews
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia
| |
Collapse
|
10
|
Fogagnolo M, Bergamini P, Marchesi E, Marvelli L, Gambari R, Lampronti I. Polytopic carriers for platinum ions: from digalloyl depside to tannic acid. NEW J CHEM 2020. [DOI: 10.1039/d0nj01352h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multinuclear platinum complexes of the natural antioxidant tannic acid and its aglycone part methyl digallate can be prepared via an environmentally friendly, solvent-free process exploiting the convenient precursor [PtCO3(Me2SO-S)2].
Collapse
Affiliation(s)
- Marco Fogagnolo
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Università degli Studi di Ferrara
- 44121 Ferrara
- Italy
| | - Paola Bergamini
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Università degli Studi di Ferrara
- 44121 Ferrara
- Italy
| | - Elena Marchesi
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Università degli Studi di Ferrara
- 44121 Ferrara
- Italy
| | - Lorenza Marvelli
- Dipartimento di Scienze Chimiche e Farmaceutiche
- Università degli Studi di Ferrara
- 44121 Ferrara
- Italy
| | - Roberto Gambari
- Dipartimento di Scienze della Vita e Biotecnologie
- Sezione di Biochimica e Biologia Molecolare
- Università degli Studi di Ferrara
- 44121 Ferrara
- Italy
| | - Ilaria Lampronti
- Dipartimento di Scienze della Vita e Biotecnologie
- Sezione di Biochimica e Biologia Molecolare
- Università degli Studi di Ferrara
- 44121 Ferrara
- Italy
| |
Collapse
|
11
|
Huang Y, Hu X, Zhao H, He D, Li Y, Yang M, Yu Z, Li K, Zhang J. Composite alkali polysaccharide supramolecular nanovesicles improve biocharacteristics and anti-lung cancer activity of natural phenolic drugs via oral administration. Int J Pharm 2020; 573:118864. [DOI: 10.1016/j.ijpharm.2019.118864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/21/2019] [Accepted: 11/10/2019] [Indexed: 02/07/2023]
|
12
|
Censi V, Caballero AB, Pérez-Hernández M, Soto-Cerrato V, Korrodi-Gregório L, Pérez-Tomás R, Dell'Anna MM, Mastrorilli P, Gamez P. DNA-binding and in vitro cytotoxic activity of platinum(II) complexes of curcumin and caffeine. J Inorg Biochem 2019; 198:110749. [PMID: 31200320 DOI: 10.1016/j.jinorgbio.2019.110749] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
Three Pt(II) complexes containing the natural ligands curcumin and caffeine, namely [Pt(curc)(PPh3)2]Cl (1), [PtCl(curc)(DMSO)] (2) (curc = deprotonated curcumin) and trans-[Pt(caffeine)Cl2(DMSO)] (3), were synthesized and fully characterized. The data obtained suggest that, for both 1 and 2, the anion of curcumin is coordinated to the platinum ion via the oxygen atoms of the β-diketonate moiety. Spectroscopic features reveal that in 2 and 3, a DMSO molecule is S-bonded to the metal centre. For 3, all data indicate a square-planar geometry formed by a 9-N bonded caffeine, two trans chloride anions and a DMSO. The three complexes undergo changes in solution upon incubation for 24 h; 1 and 2 release curcumin while 3 isomerizes from trans to cis configuration. The DNA-binding and cytotoxic properties of 1-3 were evaluated in vitro. Despite their structural similarity, curcuminate-containing 1 and 2 exhibit distinct DNA interactions. While 1 appears to intercalate between nucleobase pairs, inducing the oxidative degradation of the biomolecule, 2 behaves as a groove binder, by means of electrostatic forces. Caffeine-containing 3 exhibits a behaviour that is comparable to that of 2. Complexes 1 and 2 showed moderate to high cytotoxicity and selectivity against several cancer cell lines, while 3 is inactive. Compounds 1 and 2 can be further activated by visible-light irradiation.
Collapse
Affiliation(s)
- Valentina Censi
- Department of Inorganic and Organic Chemistry, Inorganic Chemistry Section, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; DICATECh, Politecnico di Bari, via Orabona, 4, 70125 Bari, Italy
| | - Ana B Caballero
- Department of Inorganic and Organic Chemistry, Inorganic Chemistry Section, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain.
| | - Marta Pérez-Hernández
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Campus Bellvitge, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Spain
| | - Vanessa Soto-Cerrato
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Campus Bellvitge, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Spain
| | - Luís Korrodi-Gregório
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Campus Bellvitge, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Spain
| | - Ricardo Pérez-Tomás
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Campus Bellvitge, Feixa Llarga s/n, 08907 L'Hospitalet de Llobregat, Spain
| | | | | | - Patrick Gamez
- Department of Inorganic and Organic Chemistry, Inorganic Chemistry Section, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
13
|
Hildebrandt J, Trautwein R, Kritsch D, Häfner N, Görls H, Dürst M, Runnebaum IB, Weigand W. Synthesis, characterization and biological investigation of platinum(ii) complexes with asparagusic acid derivatives as ligands. Dalton Trans 2019; 48:936-944. [PMID: 30565617 DOI: 10.1039/c8dt02553c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
After more than 50 years of platinum-based anticancer research only three compounds are in clinical use worldwide. The use of the well-known lead compound of this class of anticancer agents, cisplatin, is limited by its side effects and varying resistance mechanisms. Therefore, we report on platinum(ii) compounds with asparagusic acid derivatives as ligands which show interesting anticancer results on cisplatin resistant cell lines.
Collapse
Affiliation(s)
- Jana Hildebrandt
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldstraße 8, 07743 Jena, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang SL, Wang ZF, Qin QP, Tan MX, Luo DM, Zou BQ, Liu YC. A 9‑chloro‑5,6,7,8‑tetrahydroacridine Pt(II) complex induces apoptosis of Hep‑G2 cells via inhibiting telomerase activity and disrupting mitochondrial pathway. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2018.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Native Quercetin as a Chloride Receptor in an Organic Solvent. Molecules 2018; 23:molecules23123366. [PMID: 30572599 PMCID: PMC6320934 DOI: 10.3390/molecules23123366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 11/16/2022] Open
Abstract
The binding properties of quercetin toward chloride anions were investigated by means of 1H-NMR, 13C-NMR, and electrospray ionization mass spectrometry (ESI-MS) measurements, as well as computational calculations. The results indicate that quercetin behaves primarily as a ditopic receptor with the binding site of the B ring that exhibits stronger chloride affinity compared to the A ring. However, these sites are stronger receptors than those of catechol and resorcinol because of their conjugation with the carbonyl group located on the C ring. The 1:1 and 1:2 complexation of this flavonoid with Cl− was also supported by ESI mass spectrometry.
Collapse
|
16
|
Endrizzi F, Di Bernardo P, Zanonato PL, Tisato F, Porchia M, Ahmed Isse A, Melchior A, Tolazzi M. Cu(i) and Ag(i) complex formation with the hydrophilic phosphine 1,3,5-triaza-7-phosphadamantane in different ionic media. How to estimate the effect of a complexing medium. Dalton Trans 2018; 46:1455-1466. [PMID: 28074209 DOI: 10.1039/c6dt04221j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The complexes of Cu(i) and Ag(i) with 1,3,5-triaza-7-phosphadamantane (PTA) are currently studied for their potential clinical use as anticancer agents, given the cytotoxicity they exhibited in vitro towards a panel of several human tumor cell lines. These metallodrugs are prepared in the form of [M(PTA)4]+ (M = Cu+, Ag+) compounds and dissolved in physiological solution for their administration. However, the nature of the species involved in the cytotoxic activity of the compounds is often unknown. In the present work, the thermodynamics of formation of the complexes of Cu(i) and Ag(i) with PTA in aqueous solution is investigated by means of potentiometric, spectrophotometric and microcalorimetric methods. The results show that both metal(i) ions form up to four successive complexes with PTA. The formation of Ag(i) complexes is studied at 298.15 K in 0.1 M NaNO3 whereas the formation of the Cu(i) one is studied in 1 M NaCl, where Cu(i) is stabilized by the formation of three successive chloro-complexes. Therefore, for this latter system, conditional stability constants and thermodynamic data are obtained. To estimate the affinity of Cu(i) for PTA in the absence of chloride, Density Functional Theory (DFT) calculations have been done to obtain the stoichiometry and the relative stability of the possible Cu/PTA/Cl species. Results indicate that one chloride ion is involved in the formation of the first two complexes of Cu(i) ([CuCl(PTA)] and [CuCl(PTA)2]) whereas it is absent in the successive ones ([Cu(PTA)3]+ and [Cu(PTA)4]+). The combination of DFT results and thermodynamic experimental data has been used to estimate the stability constants of the four [Cu(PTA)n]+ (n = 1-4) complexes in an ideal non-complexing medium. The calculated stability constants are higher than the corresponding conditional values and show that PTA prefers Cu(i) to the Ag(i) ion. The approach used here to estimate the hidden role of chloride on the conditional stability constants of Cu(i) complexes may be applied to any Cu(i)/ligand system, provided that the stoichiometry of the species in NaCl solution is known. The speciation for the two systems shows that the [M(PTA)4]+ (M = Cu+, Ag+) complexes present in the metallodrugs are dissociated into lower stoichiometry species when diluted to the micromolar concentration range, typical of the in vitro biological testing. Accordingly, [Cu(PTA)2]+, [Cu(PTA)3]+ and [Ag(PTA)2]+ are predicted to be the species actually involved in the cytotoxic activity of these compounds.
Collapse
Affiliation(s)
- Francesco Endrizzi
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy. and Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Plinio Di Bernardo
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Pier Luigi Zanonato
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy.
| | | | | | - Abdirisak Ahmed Isse
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Andrea Melchior
- Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Laboratori di Scienze e Tecnologie Chimiche, via Cotonificio 108, 33100 Udine, Italy
| | - Marilena Tolazzi
- Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Laboratori di Scienze e Tecnologie Chimiche, via Cotonificio 108, 33100 Udine, Italy
| |
Collapse
|
17
|
Fereidoonnezhad M, Ramezani Z, Nikravesh M, Zangeneh J, Golbon Haghighi M, Faghih Z, Notash B, Shahsavari HR. Cycloplatinated(ii) complexes bearing an O,S-heterocyclic ligand: search for anticancer drugs. NEW J CHEM 2018. [DOI: 10.1039/c8nj01332b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cycloplatinated(ii) complexes containing the 2-mercaptopyridine N-oxide ligand were synthesized and characterized spectroscopically. The biological activities of these complexes were also investigated.
Collapse
Affiliation(s)
- Masood Fereidoonnezhad
- Cancer, Environmental and Petroleum Pollutants Research Center; Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences
- Ahvaz
- Iran
| | - Zahra Ramezani
- Cancer, Environmental and Petroleum Pollutants Research Center; Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences
- Ahvaz
- Iran
| | - Mahshid Nikravesh
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-66731
- Iran
| | - Jalalaldin Zangeneh
- Cancer, Environmental and Petroleum Pollutants Research Center; Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences
- Ahvaz
- Iran
| | | | - Zahra Faghih
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Behrouz Notash
- Department of Chemistry, Shahid Beheshti University
- Tehran 19839-69411
- Iran
| | - Hamid R. Shahsavari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-66731
- Iran
| |
Collapse
|
18
|
Bai L, Gao C, Liu Q, Yu C, Zhang Z, Cai L, Yang B, Qian Y, Yang J, Liao X. Research progress in modern structure of platinum complexes. Eur J Med Chem 2017; 140:349-382. [PMID: 28985575 DOI: 10.1016/j.ejmech.2017.09.034] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/18/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
Abstract
Since the antitumor activity of cisplatin was discovered in 1967 by Rosenberg, platinum-based anticancer drugs have played an important role in chemotherapy in clinic. Nevertheless, platinum anticancer drugs also have caused severe side effects and cross drug resistance which limited their applications. Therefore, a significant amount of efforts have been devoted to developing new platinum-based anticancer agents with equal or higher antitumor activity but lower toxicity. Until now, a large number of platinum-based complexes have been prepared and extensively investigated in vitro and in vivo. Among them, some platinum-based complexes revealing excellent anticancer activity showed the potential to be developed as novel type of anticancer agents. In this account, we present such platinum-based anticancer complexes which owning various types of ligands, such as, amine carrier ligands, leaving groups, reactive molecule, steric hindrance groups, non-covalently binding platinum (II) complexes, Platinum(IV) complexes and polynuclear platinum complexes. Overall, platinum-based anticancer complexes reported recently years upon modern structure are emphasized.
Collapse
Affiliation(s)
- Linkui Bai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Qinghua Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Congtao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhuxin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Linxiang Cai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yunxu Qian
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiali Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
19
|
Research Progress in the Modification of Quercetin Leading to Anticancer Agents. Molecules 2017; 22:molecules22081270. [PMID: 28758919 PMCID: PMC6152094 DOI: 10.3390/molecules22081270] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/25/2022] Open
Abstract
The flavonoid quercetin (3,3′,4′,5,7-pentahydroxyflavone) is widely distributed in plants, foods, and beverages. This polyphenol compound exhibits varied biological actions such as antioxidant, radical-scavenging, anti-inflammatory, antibacterial, antiviral, gastroprotective, immune-modulator, and finds also application in the treatment of obesity, cardiovascular diseases and diabetes. Besides, quercetin can prevent neurological disorders and exerts protection against mitochondrial damages. Various in vitro studies have assessed the anticancer effects of quercetin, although there are no conclusive data regarding its mode of action. However, low bioavailability, poor aqueous solubility as well as rapid body clearance, fast metabolism and enzymatic degradation hamper the use of quercetin as therapeutic agent, so intense research efforts have been focused on the modification of the quercetin scaffold to obtain analogs with potentially improved properties for clinical applications. This review gives an overview of the developments in the synthesis and anticancer-related activities of quercetin derivatives reported from 2012 to 2016.
Collapse
|
20
|
Fereidoonnezhad M, Niazi M, Shahmohammadi Beni M, Mohammadi S, Faghih Z, Faghih Z, Shahsavari HR. Synthesis, Biological Evaluation, and Molecular Docking Studies on the DNA Binding Interactions of Platinum(II) Rollover Complexes Containing Phosphorus Donor Ligands. ChemMedChem 2017; 12:456-465. [PMID: 28195406 DOI: 10.1002/cmdc.201700007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/12/2017] [Indexed: 12/21/2022]
Abstract
Cyclometalated rollover complexes of the type [PtMe(κ2 N,C-bipyO-H)(L)] [bipyO-H=cyclometalated 2,2'-bipyridine N-oxide; L=tricyclohexylphosphine (PCy3 , 2 a), 2-(diphenylphosphino)pyridine (PPh2 py, 2 b), P(OPh)3 (2 c)] were synthesized by treating [PtMe(κ2 N,C-bipyO-H)(SMe2 )] (1) with various monodentate phosphine and phosphite ligands. These complexes were characterized by NMR spectroscopy, and the structure of 2 a was confirmed by single-crystal X-ray diffraction. Complex 1 was treated with bis(diphenylphosphino)methane (dppm) at a 1:1 ratio to give the corresponding [PtMe(κ2 N,C-bipyO-H)(κ1 P-dppm)] (3 b) complex, in which the dppm ligand acts as a monodentate pendant ligand. The biological activities of these complexes were evaluated against a panel of four standard cancer cell lines: lung carcinoma (A549), ovarian carcinoma (OV-90 and SKOV3), and breast carcinoma (MCF-7). Complexes 2 c and especially 3 b indicated effective potent cytotoxic activity regarding the cell lines. Electrophoresis mobility shift assays and molecular-modeling investigations were performed to determine the specific binding mode and the binding orientation of these alkylating agents to DNA. Detection of cellular reactive oxygen species was also determined.
Collapse
Affiliation(s)
- Masood Fereidoonnezhad
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cancer, Environmental and Petroleum Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Niazi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Yousef Sobouti Blvd., Zanjan, 45137-6731, Iran
| | - Mahnaz Shahmohammadi Beni
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shima Mohammadi
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zeinab Faghih
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Faghih
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid R Shahsavari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Yousef Sobouti Blvd., Zanjan, 45137-6731, Iran
| |
Collapse
|