1
|
McMullon G, Ezdoglian A, Booth AC, Jimenez-Royo P, Murphy PS, Jansen G, van der Laken CJ, Faulkner S. Synthesis and Characterization of Folic Acid-Conjugated Terbium Complexes as Luminescent Probes for Targeting Folate Receptor-Expressing Cells. J Med Chem 2024; 67:14062-14076. [PMID: 39138970 PMCID: PMC11345839 DOI: 10.1021/acs.jmedchem.4c00919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/08/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Several conjugates between folic acid and a series of kinetically stable lanthanide complexes have been synthesized, using amide coupling and azide-alkyne cycloaddition methodologies to link the metal-binding domain to folate through a variety of spacer groups. While all these complexes exhibit affinity for the folate receptor, it is clear that the point of attachment to folate is essential, with linkage through the γ-carboxylic acid giving rise to significantly enhanced receptor affinity. All the conjugates studied show affinities consistent with displacing biological circulating folate derivatives, 5-methyltetrahydrofolate, from folate receptors. All the complexes exhibit luminescence with a short-lived component arising from ligand fluorescence overlaid on a much longer lived terbium-centered component. These can be separated using time-gating methods. From the results obtained, the most promising approach to achieve sensitized luminescence in these systems requires incorporating a sensitizing chromophore close to the lanthanide.
Collapse
Affiliation(s)
- Grace
T. McMullon
- Chemistry
Research Laboratory, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Aiarpi Ezdoglian
- Department
of Rheumatology and Clinical Immunology, Amsterdam University Medical
Center, Location VU University Medical Center, 1081 HV Amsterdam, Netherlands
| | - Anna C. Booth
- Chemistry
Research Laboratory, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Pilar Jimenez-Royo
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Philip S. Murphy
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Gerrit Jansen
- Department
of Rheumatology and Clinical Immunology, Amsterdam University Medical
Center, Location VU University Medical Center, 1081 HV Amsterdam, Netherlands
| | - Conny J. van der Laken
- Department
of Rheumatology and Clinical Immunology, Amsterdam University Medical
Center, Location VU University Medical Center, 1081 HV Amsterdam, Netherlands
| | - Stephen Faulkner
- Chemistry
Research Laboratory, University of Oxford, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
2
|
Nara S, Parasher G, Malhotra BD, Rawat M. Novel role of folate (vitamin B9) released by fermenting bacteria under Human Intestine like environment. Sci Rep 2023; 13:20226. [PMID: 37980374 PMCID: PMC10657476 DOI: 10.1038/s41598-023-47243-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023] Open
Abstract
The anaerobic region of the gastrointestinal (GI) tract has been replicated in the anaerobic chamber of a microbial fuel cell (MFC). Electroactive biomolecules released by the facultative anaerobes (Providencia rettgeri) under anoxic conditions have been studied for their potential role for redox balance. MALDI study reveals the presence of vitamin B9 (folate), 6-methylpterin, para-aminobenzoic acid (PABA) and pteroic acid called pterin pool. ATR-FTIR studies further confirm the presence of the aromatic ring and side chains of folate, 6-methylpterin and PABA groups. The photoluminescence spectra of the pool exhibit the maximum emission at 420, 425, 440, and 445 nm when excited by 310, 325, 350, and 365 nm wavelengths (day 20 sample) highlighting the presence of tunable bands. The cyclic voltammetric studies indicate the active participation of pterin pool molecules in the transfer of electrons with redox potentials at - 0.2 V and - 0.4 V for p-aminobenzoate and pterin groups, respectively. In addition, it is observed that under prolonged conditions of continuous oxidative stress (> 20 days), quinonoid tetrahydrofolate is formed, leading to temporary storage of charge. The results of the present study may potentially be useful in designing effective therapeutic strategies for the management of various GI diseases by promoting or blocking folate receptors.
Collapse
Affiliation(s)
- Sharda Nara
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, 110042, India
| | - Gulshan Parasher
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Bansi Dhar Malhotra
- Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, 110042, India.
- Environmental Sciences & Biomedical Metrology, CSIR-National Physical Laboratory, Dr K.S. Krishnan Road, New Delhi, 110012, India.
| | - Manmeet Rawat
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA.
- Division of Gastroenterology and Hepatology, Department of Medicine, The Penn State University College of Medicine, Penn State University, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
3
|
Metal Complexes in Target-Specific Anticancer Therapy: Recent Trends and Challenges. J CHEM-NY 2022. [DOI: 10.1155/2022/9261683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cancer is characterized by abnormal cell differentiation in or on the part of the body. The most commonly used chemotherapeutic drugs are developed to target rapidly dividing cells, such as cancer cells, but they also damage healthy epithelial cells. This has serious consequences for normal cells and become responsible for the development of various disorders. Several strategies for delivering the cytotoxic drugs to cancerous sites that limit systemic toxicity and other adverse effects have recently been evolved. Among them, biomolecule-conjugated metal complexes-based cancer targeting strategies have shown tremendous advantages in cancer therapy. This review focuses on several chemoselective biomolecules-bound metal complexes as prospective cancer therapy-targeted agents. In this review, we presented the details of the various extra- and intracellular targeting mechanisms in cancer therapy. We also addressed the current clinical issues and recent therapeutic strategies in targeted cancer therapy that may pave a way for the future direction of metal complexes-based targeted cancer therapy.
Collapse
|
4
|
Mansur AAP, Mansur HS, Leonel AG, Carvalho IC, Lage MCG, Carvalho SM, Krambrock K, Lobato ZIP. Supramolecular magnetonanohybrids for multimodal targeted therapy of triple-negative breast cancer cells. J Mater Chem B 2021; 8:7166-7188. [PMID: 32614035 DOI: 10.1039/d0tb01175d] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the undeniable advances in recent decades, cancer remains one of the deadliest diseases of the current millennium, where the triple-negative breast cancer (TNBC) is very aggressive, extremely metastatic, and resistant to conventional chemotherapy. The nanotheranostic approach focusing on targeting membrane receptors often expressed at abnormal levels by cancer cells can be a strategic weapon for fighting malignant tumors. Herein, we introduced a novel "all-in-one nanosoldier" made of colloidal hybrid nanostructures, which were designed for simultaneously targeting, imaging, and killing TNBC cells. These nanohybrids comprised four distinct components: (a) superparamagnetic iron oxide nanoparticles, as bi-functional nanomaterials for inducing ferroptosis via inorganic nanozyme-mediated catalysis and magnetotherapy by hyperthermia treatment; (b) carboxymethyl cellulose biopolymer, as a water-soluble capping macromolecule; (c) folic acid, as the membranotopic vector for targeting folate receptors; (d) and doxorubicin (DOX) drug for chemotherapy. The results demonstrated that this novel strategy was highly effective for targeting and killing TNBC cells in vitro, expressing high levels of folate membrane-receptors. The results evidenced that three integrated mechanisms triggered the deaths of the cancer cells in vitro: (a) ferroptosis, by magnetite nanoparticles inducing a Fenton-like reaction; (b) magneto-hyperthermia effect by generating heat under an alternate magnetic field; and (c) chemotherapy, through the DOX intracellular release causing DNA dysfunction. This "all-in-one nanosoldier" strategy offers a vast realm of prospective alternatives for attacking cancer cells, combining multimodal therapy and the delivery of therapeutic agents to diseased sites and preserving healthy cells, which is one of the most critical clinical challenges faced in fighting drug-resistant breast cancers.
Collapse
Affiliation(s)
- Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 - Escola de Engenharia, Bloco 2 - Sala 2233, 31.270-901, Belo Horizonte/M.G., Brazil.
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 - Escola de Engenharia, Bloco 2 - Sala 2233, 31.270-901, Belo Horizonte/M.G., Brazil.
| | - Alice G Leonel
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 - Escola de Engenharia, Bloco 2 - Sala 2233, 31.270-901, Belo Horizonte/M.G., Brazil.
| | - Isadora C Carvalho
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 - Escola de Engenharia, Bloco 2 - Sala 2233, 31.270-901, Belo Horizonte/M.G., Brazil.
| | - Manuela C G Lage
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 - Escola de Engenharia, Bloco 2 - Sala 2233, 31.270-901, Belo Horizonte/M.G., Brazil.
| | - Sandhra M Carvalho
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG, Av. Antônio Carlos, 6627 - Escola de Engenharia, Bloco 2 - Sala 2233, 31.270-901, Belo Horizonte/M.G., Brazil.
| | - Klaus Krambrock
- Department of Physics, Federal University of Minas Gerais - UFMG, Brazil
| | - Zelia I P Lobato
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais - UFMG, Brazil
| |
Collapse
|
5
|
Gao XN, Gao EJ, Zhu MC. Synthesis, Crystal Structure, DNA Binding, and Cytotoxicity of a Zn(II) Complex Constructed from Phenylacetic Acid. J STRUCT CHEM+ 2019. [DOI: 10.1134/s0022476619070217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Shi J, Wang Y, Huang L, Lu P, Sun Q, Wang Y, Tang J, Belfiore LA, Kipper MJ. Polyvinylpyrrolidone Nanofibers Encapsulating an Anhydrous Preparation of Fluorescent SiO₂⁻Tb 3+ Nanoparticles. NANOMATERIALS 2019; 9:nano9040510. [PMID: 30986951 PMCID: PMC6523366 DOI: 10.3390/nano9040510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 11/16/2022]
Abstract
A novel anhydrous preparation of silica (SiO₂)-encapsulated terbium (Tb3+) complex nanoparticles has been investigated. The SiO₂-Tb3+ nanoparticles are incorporated in electrospun polyvinylpyrrolidone hybrid nanofibers. Transmission electron microscopy confirms that Tb3+ complexes are uniformly and stably encapsulated in or carried by nanosilica. The influence of pH on the fluorescence of Tb3+ complexes is discussed. The properties, composition, structure, and luminescence of the resulting SiO₂⁻Tb3+ hybrid nanoparticles are investigated in detail. There is an increase in the fluorescence lifetime of SiO₂⁻Tb3+ nanoparticles and SiO₂⁻Tb3+/polyvinylpyrrolidone (PVP) hybrid nanofibers compared with the pure Tb3+ complexes. Due to the enhanced optical properties, the fluorescent hybrid nanofibers have potential applications as photonic and photoluminescent materials.
Collapse
Affiliation(s)
- Jianhang Shi
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yanxin Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Linjun Huang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Peng Lu
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Qiuyu Sun
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Yao Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Laurence A Belfiore
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA.
| | - Matt J Kipper
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA.
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA.
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
7
|
Mathieu E, Sipos A, Demeyere E, Phipps D, Sakaveli D, Borbas KE. Lanthanide-based tools for the investigation of cellular environments. Chem Commun (Camb) 2018; 54:10021-10035. [PMID: 30101249 DOI: 10.1039/c8cc05271a] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biological probes constructed from lanthanides can provide a variety of readout signals, such as the luminescence of Eu(iii), Tb(iii), Yb(iii), Sm(iii) and Dy(iii), and the proton relaxation enhancement of Gd(iii) and Eu(ii). For numerous applications the intracellular delivery of the lanthanide probe is essential. Here, we review the methods for the intracellular delivery of non-targeted complexes (i.e. where the overall complex structure enhances cellular uptake), as well as complexes attached to a targeting unit (i.e. to a peptide or a small molecule) that facilitates delivery. The cellular applications of lanthanide-based supramolecules (dendrimers, metal organic frameworks) are covered briefly. Throughout, we emphasize the techniques that can confirm the intracellular localization of the lanthanides and those that enable the determination of the fate of the probes once inside the cell. Finally, we highlight methods that have not yet been applied in the context of lanthanide-based probes, but have been successful in the intracellular delivery of other metal-based probes.
Collapse
Affiliation(s)
- Emilie Mathieu
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
8
|
Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.05.012] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Gao E, Xing J, Qu Y, Qiu X, Zhu M. Synthesis, characterization, DNA binding, cytotoxicity and molecular docking properties of Cu (II) and Mn (II) complexes with 1,4-bis (pyrazol-1-yl) terephthalic acid. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4469] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Enjun Gao
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 People's Republic of China
| | - Jialing Xing
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 People's Republic of China
| | - Yun Qu
- Department of Oncology; Shengjing Hospital of China Medical University; Shenyang People's Republic of China
| | - Xue Qiu
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 People's Republic of China
| | - Mingchang Zhu
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province and Laboratory of Coordination Chemistry; Shenyang University of Chemical Technology; Shenyang 110142 People's Republic of China
| |
Collapse
|