1
|
Freire DM, Johnston HM, Smith KJ, Pota K, Mekhail MA, Kharel S, Green KN. Hydrogen Peroxide Disproportionation Activity Is Sensitive to Pyridine Substitutions on Manganese Catalysts Derived from 12-Membered Tetra-Aza Macrocyclic Ligands. Inorg Chem 2023; 62:15842-15855. [PMID: 37729496 PMCID: PMC10829483 DOI: 10.1021/acs.inorgchem.3c01234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The abundance of manganese in nature and versatility to access different oxidation states have made manganese complexes attractive as catalysts for oxidation reactions in both biology and industry. Macrocyclic ligands offer the advantage of substantially controlling the reactivity of the manganese center through electronic tuning and steric constraint. Inspired by the manganese catalase enzyme, a biological catalyst for the disproportionation of H2O2 into water and O2, the work herein employs 12-membered tetra-aza macrocyclic ligands to study how the inclusion of and substitution to the pyridine ring on the macrocyclic ligand scaffold impacts the reactivity of the manganese complex as a H2O2 disproportionation catalyst. Synthesis and isolation of the manganese complexes was validated by characterization using UV-vis spectroscopy, SC-XRD, and cyclic voltammetry. Potentiometric titrations were used to study the ligand basicity as well as the thermodynamic equilibrium with Mn(II). Manganese complexes were also produced in situ and characterized using electrochemistry for comparison to the isolated species. Results from these studies and H2O2 reactivity showed a remarkable difference among the ligands studied, revealing instead a distinction in the reactivity regarding the number of pyridine rings within the scaffold. Moreover, electron-donating groups on the 4-position of the pyridine ring enhanced the reactivity of the manganese center for H2O2 disproportionation, demonstrating a handle for control of oxidation reactions using the pyridinophane macrocycle.
Collapse
Affiliation(s)
- David M Freire
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Hannah M Johnston
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Katherine J Smith
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Kristof Pota
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Magy A Mekhail
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Sugam Kharel
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| | - Kayla N Green
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| |
Collapse
|
2
|
Luiz E, Farias G, Bortoluzzi AJ, Neves A, de Melo Mattos LM, Pereira MD, Xavier FR, Peralta RA. Hydrolytic activity of new bioinspired Mn IIIMn II and Fe IIIMn II complexes as mimetics of PAPs: Biological and environmental interest. J Inorg Biochem 2022; 236:111965. [PMID: 35988388 DOI: 10.1016/j.jinorgbio.2022.111965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 12/15/2022]
Abstract
Coordination compounds that mimic Purple Acid Phosphatases (PAPs) have drawn attention in the bioinorganic field due to their capacity to cleave phosphodiester bonds. However, their catalytic activity upon phosphate triesters is still unexplored. Thus, we report the synthesis and characterization of two binuclear complexes, [MnIIMnIII(L1)(OAc)2]BF4 (1) and [MnIIFeIII(L1)(OAc)2]BF4 (2) (H2L1 = 2-[N,N-bis-(2- pyridilmethyl)aminomethyl]-4-methyl-6-[N-(2-hydroxy-3-formyl-5-methylbenzyl)-N-(2-pyridylmethyl)aminomethyl]phenol), their hydrolytic activity and antioxidant potential. The complexes were fully characterized, including the X-Ray diffraction (XRD) of 1. Density functional theory (DFT) calculations were performed to better understand their electronic and structural properties and phosphate conjugates. The catalytic activity was analyzed for two model substrates, a diester (BDNPP) and a triester phosphate (DEDNPP). The results suggest enhancement of the hydrolysis reaction by 170 to 1500 times, depending on the substrate and complex. It was possible to accompany the catalytic reaction of DEDNPP hydrolysis by phosphorus nuclear magnetic resonance (31P NMR), showing that both 1 and 2 are efficient catalysts. Moreover, we also addressed that 1 and 2 present a relevant antioxidant potential, protecting the yeast Saccharomyces cerevisiae, used as eukaryotic model of study, against the exposure of cells to acute oxidative stress.
Collapse
Affiliation(s)
- Edinara Luiz
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Giliandro Farias
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Adailton J Bortoluzzi
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Ademir Neves
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Larissa Maura de Melo Mattos
- Instituto de Química, Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, 21941-909, Brazil; Rede Micologia RJ - FAPERJ
| | - Marcos Dias Pereira
- Instituto de Química, Departamento de Bioquímica, Universidade Federal do Rio de Janeiro, 21941-909, Brazil; Rede Micologia RJ - FAPERJ
| | - Fernando R Xavier
- Departamento de Química, Universidade do Estado de Santa Catarina, Joinville, Santa Catarina 89219-710, Brazil.
| | - Rosely A Peralta
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil.
| |
Collapse
|
3
|
Rouco L, Alvariño R, Alfonso A, Romero MJ, Pedrido R, Maneiro M. Neuroprotective effects of fluorophore-labelled manganese complexes: Determination of ROS production, mitochondrial membrane potential and confocal fluorescence microscopy studies in neuroblastoma cells. J Inorg Biochem 2021; 227:111670. [PMID: 34864293 DOI: 10.1016/j.jinorgbio.2021.111670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023]
Abstract
In this work, four manganese(II) complexes derived from the ligands H2L1-H2L4, that incorporate dansyl or tosyl fluorescent dyes, have been investigated in term of their antioxidant properties. Two of the manganese(II) complexes have been newly prepared using the asymmetric half-salen ligand H2L2 and the thiosemicarbazone ligand H2L3. The four organic strands and the manganese complexes have been characterized by different analytical and spectroscopic techniques. The study of the antioxidant behaviour of these two new complexes and other two fluorophore-labelled analogues was tested in SH-SY5Y neuroblastoma cells. These four model complexes 1-4 were found to protect cells from oxidative damage in this human neuronal model, by reducing the release of reactive oxygen species. Complexes 1-4 significantly improved cell survival, with levels between 79.1 ± 0.8% and 130.9 ± 4.1%. Moreover, complexes 3 and 4 were able to restore the mitochondrial membrane potential at 1 μM, with 4 reaching levels higher than 85%, similar to the percentages obtained by the positive control agent cyclosporin A. The incorporation of the fluorescent label in the complexes allowed the study of their ability to enter the human neuroblastoma cells by confocal microscopy.
Collapse
Affiliation(s)
- Lara Rouco
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain
| | - Rebeca Alvariño
- Departamento de Farmacología, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain.
| | - Amparo Alfonso
- Departamento de Farmacología, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain
| | - María J Romero
- Departamento de Didácticas Aplicadas, Facultade de Formación do Profesorado, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain
| | - Rosa Pedrido
- Departamento de Química Inorgánica, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marcelino Maneiro
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain.
| |
Collapse
|
4
|
Mehrotra R, Richezzi M, Palopoli C, Hureau C, Signorella SR. Effect of coordination dissymmetry on the catalytic activity of manganese catalase mimics. J Inorg Biochem 2020; 213:111264. [PMID: 33045594 DOI: 10.1016/j.jinorgbio.2020.111264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 11/15/2022]
Abstract
Two mixed-valence Mn(II)Mn(III) complexes, [Mn2L1(OAc)2(H2O)]BPh4·2.5H2O and [Mn2L2(OAc)2]·4H2O, obtained with unsymmetrical N4O2-hexadentate L1(2-) (H2L1 = 2-(N,N-bis(2-(pyridylmethyl)aminomethyl)-6-(N-(2-hydroxybenzyl)benzylaminomethyl)-4-methylphenol) and N4O3-heptadentate L2(3-) (NaH2L2 = 2-(N,N-bis(2-(pyridylmethyl)aminomethyl)-6-(N'-(2-hydroxybenzyl)(carboxymethyl)aminomethyl)-4-methylphenol sodium salt) ligands, have been prepared and characterized. Both complexes share a μ-phenolate-bis(μ-acetate)Mn(II)Mn(III) core and N3O3-coordination sphere around the Mn(II) ion, but differ in the donor groups surrounding Mn(III) (NO4(solvent) and NO5). In non-protic solvents, these two complexes are able to disproportionate at least 3600 equiv. of H2O2 without significant decomposition, with first-order dependence on catalyst and saturation kinetics on [H2O2]. Spectroscopic monitoring of the reaction mixtures revealed the two complexes disproportionate H2O2 employing a different redox cycle, with retention of dinuclearity. The higher catalytic efficiency of [Mn2L2(OAc)2] was rationalized in terms of the larger labilizing effect of the heptadentate ligand that favors the acetate-shift and the replacement of the non-coordinating benzyl arm of L1 by a carboxylate arm in L2 which facilitates the formation of the catalyst-H2O2 adduct, placing [Mn2L2(OAc)2] as the most efficient among the phenolate-bridged diMn catalysts based on the kcat/KM criterion.
Collapse
Affiliation(s)
- Ripul Mehrotra
- IQUIR (Instituto de Quimica Rosario), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Micaela Richezzi
- IQUIR (Instituto de Quimica Rosario), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Claudia Palopoli
- IQUIR (Instituto de Quimica Rosario), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination) and UPS, INPT, LCC, Université de Toulouse, 205 route de Narbonne, F-31077 Toulouse, France
| | - Sandra R Signorella
- IQUIR (Instituto de Quimica Rosario), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina.
| |
Collapse
|
5
|
Unprecedented Dinuclear CuII N,O-Donor Complex: Synthesis, Structural Characterization, Fluorescence Property, and Hirshfeld Analysis. CRYSTALS 2019. [DOI: 10.3390/cryst9120607] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An unprecedented dinuclear CuII complex, [Cu2(L2)2], derived from a salamo-like chelating ligand H2L2, was produced by the cleavage of a newly synthesized, half-salamo-like ligand HL1 (2-[O-(1-ethyloxyamide)]oxime-3,5-dichloro-phenol). This was synthesized and characterized by elemental analyses, IR, UV–Vis and fluorescent spectra, single crystal X-ray diffraction analysis, and Hirshfeld surface analysis. X-ray crystallographic analysis indicated that the two CuII (Cu1 and Cu2) ions bore different (N2O3 and N2O2) coordination environments, the penta-coordinated Cu1 ion possessed a slightly twisted tetragonal pyramid geometry with the τ value τ = 0.004, and the tetra-coordinated Cu2 ion showed a slightly twisted square planar geometry. Interestingly, one oxime oxygen atom participated in the coordination reported previously. Moreover, an infinite two-dimensional layered supramolecular network was formed. Compared with HL1, the CuII complex possessed the characteristic of fluorescence quenching.
Collapse
|
6
|
Rouco L, Liberato A, Fernández-Trujillo MJ, Máñez A, Basallote MG, Alvariño R, Alfonso A, Botana LM, Maneiro M. Salen‑manganese complexes for controlling ROS damage: Neuroprotective effects, antioxidant activity and kinetic studies. J Inorg Biochem 2019; 203:110918. [PMID: 31759263 DOI: 10.1016/j.jinorgbio.2019.110918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/04/2019] [Accepted: 11/10/2019] [Indexed: 12/23/2022]
Abstract
A new manganese(III) complex [MnL1(DCA)(H2O)](H2O),1 [H2L1 is the chelating ligand N,N'-bis(2-hydroxy-3-methoxybenzylidene)-1,2-diaminopropane, and DCA is dicyanamide], has been prepared and characterized by different analytical and spectroscopic techniques. The tetragonally elongated octahedral geometry for the manganese coordination sphere was revealed by X-ray diffraction studies for 1. The antioxidant behavior of this complex and other manganese(III)-salen type complexes was tested through superoxide dismutase and catalase probes, and through the study of their neuroprotective effects in SH-SY5Y neuroblastoma cells. In this human neuronal model, these model complexes were found to improve cell survival in an oxidative stress model. During studies aimed to getting a better understanding of the kinetics of the processes involved in this antioxidant behavior, an important effect on the solvent in the kinetics of reaction of the complexes with H2O2 was revealed that suggests a change in the mechanism of reaction of the complexes. The kinetic data in methanol and buffered aqueous solutions correlate well with the results of the test of catalase activity, thus showing that the rate determining step in the catalytic cycle corresponds to the initial reaction of the complexes with H2O2.
Collapse
Affiliation(s)
- Lara Rouco
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain
| | - Andrea Liberato
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - M Jesús Fernández-Trujillo
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - Angeles Máñez
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - Manuel G Basallote
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - Rebeca Alvariño
- Departamento. de Farmacología, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain
| | - Amparo Alfonso
- Departamento. de Farmacología, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain
| | - Luis M Botana
- Departamento. de Farmacología, Facultade de Veterinaria, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain
| | - Marcelino Maneiro
- Departamento de Química Inorgánica, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, Lugo, Spain.
| |
Collapse
|